Spaces:
Sleeping
Sleeping
""" | |
Reinforcement Learning (A3C) using Pytroch + multiprocessing. | |
The most simple implementation for continuous action. | |
View more on my Chinese tutorial page [莫烦Python](https://morvanzhou.github.io/). | |
""" | |
import os | |
import torch.multiprocessing as mp | |
from .utils import v_wrap, push_and_pull, record, save_model | |
from .shared_adam import SharedAdam | |
from .net import Net | |
GAMMA = 0.65 | |
class Worker(mp.Process): | |
def __init__(self, max_ep, gnet, opt, global_ep, global_ep_r, res_queue, name, env, N_S, N_A, words_list, word_width, winning_ep, model_checkpoint_dir): | |
super(Worker, self).__init__() | |
self.max_ep = max_ep | |
self.name = 'w%02i' % name | |
self.g_ep, self.g_ep_r, self.res_queue, self.winning_ep = global_ep, global_ep_r, res_queue, winning_ep | |
self.gnet, self.opt = gnet, opt | |
self.word_list = words_list | |
self.lnet = Net(N_S, N_A, words_list, word_width) # local network | |
self.env = env.unwrapped | |
self.model_checkpoint_dir = model_checkpoint_dir | |
def run(self): | |
while self.g_ep.value < self.max_ep: | |
s = self.env.reset() | |
buffer_s, buffer_a, buffer_r = [], [], [] | |
ep_r = 0. | |
while True: | |
a = self.lnet.choose_action(v_wrap(s[None, :])) | |
s_, r, done, _ = self.env.step(a) | |
ep_r += r | |
buffer_a.append(a) | |
buffer_s.append(s) | |
buffer_r.append(r) | |
if done: # update global and assign to local net | |
# sync | |
push_and_pull(self.opt, self.lnet, self.gnet, done, s_, buffer_s, buffer_a, buffer_r, GAMMA) | |
goal_word = self.word_list[self.env.goal_word] | |
record( self.g_ep, self.g_ep_r, ep_r, self.res_queue, self.name, goal_word, self.word_list[a], len(buffer_a), self.winning_ep) | |
save_model(self.gnet, self.model_checkpoint_dir, self.g_ep.value, self.g_ep_r.value) | |
buffer_s, buffer_a, buffer_r = [], [], [] | |
break | |
s = s_ | |
self.res_queue.put(None) | |
def train(env, max_ep, model_checkpoint_dir): | |
os.environ["OMP_NUM_THREADS"] = "1" | |
if not os.path.exists(model_checkpoint_dir): | |
os.makedirs(model_checkpoint_dir) | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
gnet = Net(n_s, n_a, words_list, word_width) # global network | |
gnet.share_memory() # share the global parameters in multiprocessing | |
opt = SharedAdam(gnet.parameters(), lr=1e-4, betas=(0.92, 0.999)) # global optimizer | |
global_ep, global_ep_r, res_queue, win_ep = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue(), mp.Value('i', 0) | |
# parallel training | |
workers = [Worker(max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep, model_checkpoint_dir) for i in range(mp.cpu_count())] | |
[w.start() for w in workers] | |
res = [] # record episode reward to plot | |
while True: | |
r = res_queue.get() | |
if r is not None: | |
res.append(r) | |
else: | |
break | |
[w.join() for w in workers] | |
return global_ep, win_ep, gnet, res | |