import sys import os import gym import torch import matplotlib.pyplot as plt from a3c.discrete_A3C import train from a3c.utils import v_wrap from a3c.net import Net from wordle_env.wordle import WordleEnvBase def evaluate_checkpoints(dir, env): n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) net = Net(n_s, n_a, words_list, word_width) results = {} print(dir) for checkpoint in os.listdir(dir): checkpoint_path = os.path.join(dir, checkpoint) if os.path.isfile(checkpoint_path): net.load_state_dict(torch.load(checkpoint_path)) wins, guesses = evaluate(net, env) results[checkpoint] = wins, guesses return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True)) def evaluate(net, env): print("Evaluation mode") n_wins = 0 n_guesses = 0 n_win_guesses = 0 env = env.unwrapped N = env.allowable_words for goal_word in env.words[:N]: win, outcomes = play(net, env) if win: n_wins += 1 n_win_guesses += len(outcomes) # else: # print("Lost!", goal_word, outcomes) n_guesses += len(outcomes) print(f"Evaluation complete, won {n_wins/N*100}% and took {n_win_guesses/n_wins} guesses per win, " f"{n_guesses / N} including losses.") return n_wins/N*100, n_win_guesses/n_wins def play(net, env): state = env.reset() outcomes = [] win = False for i in range(env.max_turns): action = net.choose_action(v_wrap(state[None, :])) state, reward, done, _ = env.step(action) outcomes.append((env.words[action], reward)) if done: if reward >= 0: win = True break return win, outcomes def print_results(global_ep, win_ep, res): print("Jugadas:", global_ep.value) print("Ganadas:", win_ep.value) plt.plot(res) plt.ylabel('Moving average ep reward') plt.xlabel('Step') plt.show() if __name__ == "__main__": max_ep = int(sys.argv[1]) if len(sys.argv) > 1 else 100000 env_id = sys.argv[2] if len(sys.argv) > 2 else 'WordleEnv100FullAction-v0' evaluation = True if len(sys.argv) > 3 and sys.argv[3] == 'evaluation' else False env = gym.make(env_id) model_checkpoint_dir = os.path.join('checkpoints', env.unwrapped.spec.id) if not evaluation: global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir) print_results(global_ep, win_ep, res) evaluate(gnet, env) else: results = evaluate_checkpoints(model_checkpoint_dir, env) print(results)