Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,43 +4,30 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
-
# Ensure CUDA is available
|
8 |
-
assert torch.cuda.is_available(), "CUDA is not available. Please check your GPU setup."
|
9 |
-
|
10 |
-
# Set the device
|
11 |
-
device = torch.device("cuda")
|
12 |
-
torch.cuda.set_device(0) # Use the first GPU if multiple are available
|
13 |
-
|
14 |
# Load the model and tokenizer
|
15 |
peft_model_id = "rootxhacker/CodeAstra-7B"
|
16 |
config = PeftConfig.from_pretrained(peft_model_id)
|
17 |
|
18 |
-
# Load the model
|
19 |
model = AutoModelForCausalLM.from_pretrained(
|
20 |
config.base_model_name_or_path,
|
21 |
return_dict=True,
|
22 |
load_in_4bit=True,
|
23 |
-
|
24 |
-
device_map="auto"
|
25 |
)
|
26 |
|
27 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
28 |
|
29 |
# Load the Lora model
|
30 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
31 |
-
model.to(device)
|
32 |
-
|
33 |
-
# Ensure all model parameters are on CUDA
|
34 |
-
for param in model.parameters():
|
35 |
-
param.data = param.data.to(device)
|
36 |
|
37 |
@spaces.GPU(duration=200)
|
38 |
def get_completion(query, model, tokenizer):
|
39 |
try:
|
40 |
-
inputs = tokenizer(query, return_tensors="pt")
|
41 |
with torch.no_grad():
|
42 |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
43 |
-
return tokenizer.decode(outputs[0]
|
44 |
except Exception as e:
|
45 |
return f"An error occurred: {str(e)}"
|
46 |
|
@@ -59,5 +46,5 @@ iface = gr.Interface(
|
|
59 |
description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices."
|
60 |
)
|
61 |
|
62 |
-
# Launch the Gradio app
|
63 |
-
iface.launch()
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Load the model and tokenizer
|
8 |
peft_model_id = "rootxhacker/CodeAstra-7B"
|
9 |
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
|
11 |
+
# Load the model without explicit device mapping
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
config.base_model_name_or_path,
|
14 |
return_dict=True,
|
15 |
load_in_4bit=True,
|
16 |
+
device_map=None # Let the Spaces environment handle device mapping
|
|
|
17 |
)
|
18 |
|
19 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
20 |
|
21 |
# Load the Lora model
|
22 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
@spaces.GPU(duration=200)
|
25 |
def get_completion(query, model, tokenizer):
|
26 |
try:
|
27 |
+
inputs = tokenizer(query, return_tensors="pt")
|
28 |
with torch.no_grad():
|
29 |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
30 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
except Exception as e:
|
32 |
return f"An error occurred: {str(e)}"
|
33 |
|
|
|
46 |
description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices."
|
47 |
)
|
48 |
|
49 |
+
# Launch the Gradio app
|
50 |
+
iface.launch()
|