Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,23 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
peft_model_id = "rootxhacker/CodeAstra-7B"
|
12 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(
|
15 |
config.base_model_name_or_path,
|
16 |
return_dict=True,
|
17 |
load_in_4bit=True,
|
18 |
device_map="auto" # This will automatically handle device placement
|
19 |
)
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
inputs = tokenizer(query, return_tensors="pt").to(device) # Move inputs to the same device as the model
|
25 |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
26 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
+
peft_model_id = "rootxhacker/CodeAstra-7B"
|
8 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
11 |
config.base_model_name_or_path,
|
12 |
return_dict=True,
|
13 |
load_in_4bit=True,
|
14 |
device_map="auto" # This will automatically handle device placement
|
15 |
)
|
16 |
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
18 |
|
19 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
20 |
+
|
21 |
+
|
22 |
+
@spaces.GPU(duration=200)
|
23 |
+
def get_completion(query, model, tokenizer):
|
24 |
inputs = tokenizer(query, return_tensors="pt").to(device) # Move inputs to the same device as the model
|
25 |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
26 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|