Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ import random
|
|
13 |
import numpy as np
|
14 |
import re
|
15 |
import time
|
16 |
-
from typing import List, Tuple
|
17 |
import os
|
18 |
import gc
|
19 |
import spaces
|
@@ -21,14 +21,8 @@ import spaces
|
|
21 |
# Global model variables for memory efficiency
|
22 |
tokenizer = None
|
23 |
model = None
|
24 |
-
current_generator = None
|
25 |
device = None
|
26 |
|
27 |
-
def get_noising_schedule(i, max_it, sharpness=5.0):
|
28 |
-
"""Exponential noise schedule for denoising"""
|
29 |
-
x = i / max_it
|
30 |
-
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
31 |
-
|
32 |
class ARDiffusionGenerator:
|
33 |
"""Base AR-Diffusion generator with shared functionality"""
|
34 |
|
@@ -58,7 +52,7 @@ class ARDiffusionGenerator:
|
|
58 |
"""
|
59 |
|
60 |
class QualityGenerator(ARDiffusionGenerator):
|
61 |
-
"""Quality-focused AR-Diffusion generator
|
62 |
|
63 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
|
64 |
temperature: float = 1.0) -> torch.Tensor:
|
@@ -194,8 +188,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
194 |
start_time = time.time()
|
195 |
|
196 |
for step in range(steps):
|
197 |
-
step_start = time.time()
|
198 |
-
|
199 |
if progress_callback:
|
200 |
progress = 0.2 + (step / steps) * 0.7
|
201 |
elapsed = time.time() - start_time
|
@@ -222,7 +214,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
222 |
max_replacements = min(3, len(mask_positions))
|
223 |
|
224 |
sorted_positions = sorted(mask_positions.tolist())
|
225 |
-
step_replacements = 0
|
226 |
|
227 |
for pos in sorted_positions[:max_replacements]:
|
228 |
if pos < len(logits):
|
@@ -257,7 +248,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
257 |
break
|
258 |
|
259 |
current_ids[pos] = new_token
|
260 |
-
step_replacements += 1
|
261 |
total_replacements += 1
|
262 |
|
263 |
if progress_callback:
|
@@ -307,7 +297,7 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
307 |
return response
|
308 |
|
309 |
class SpeedGenerator(ARDiffusionGenerator):
|
310 |
-
"""Speed-focused AR-Diffusion generator
|
311 |
|
312 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
|
313 |
temperature: float = 1.0) -> torch.Tensor:
|
@@ -425,8 +415,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
425 |
# Use mixed precision for speed on GPU
|
426 |
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
|
427 |
for step in range(steps):
|
428 |
-
step_start = time.time()
|
429 |
-
|
430 |
if progress_callback:
|
431 |
progress = 0.2 + (step / steps) * 0.7
|
432 |
elapsed = time.time() - start_time
|
@@ -448,7 +436,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
448 |
max_replace = min(8, len(mask_pos))
|
449 |
positions = sorted(mask_pos.tolist())[:max_replace]
|
450 |
|
451 |
-
step_replacements = 0
|
452 |
for pos in positions:
|
453 |
if pos < len(logits):
|
454 |
token_logits = logits[pos].clone()
|
@@ -475,7 +462,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
475 |
new_token = top_indices[1].item()
|
476 |
|
477 |
current_ids[pos] = new_token
|
478 |
-
step_replacements += 1
|
479 |
total_replacements += 1
|
480 |
|
481 |
if progress_callback:
|
@@ -519,21 +505,61 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
519 |
|
520 |
return response
|
521 |
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
tokenizer.pad_token = tokenizer.eos_token
|
527 |
|
528 |
-
model
|
529 |
-
|
530 |
-
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
531 |
-
device_map="auto" if device.type == "cuda" else None,
|
532 |
-
trust_remote_code=True,
|
533 |
-
low_cpu_mem_usage=True
|
534 |
-
)
|
535 |
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
def cleanup_memory():
|
539 |
"""Clean up GPU memory"""
|
@@ -563,7 +589,6 @@ def chat_function(message, history, mode, progress=gr.Progress()):
|
|
563 |
# Generate response with progress callback
|
564 |
def progress_callback(pct, status_msg):
|
565 |
progress(pct)
|
566 |
-
# We'll show status in the performance display instead
|
567 |
|
568 |
response, stats = generator.generate(message, progress_callback)
|
569 |
|
@@ -711,11 +736,11 @@ if __name__ == "__main__":
|
|
711 |
show_error=True
|
712 |
)
|
713 |
|
714 |
-
#
|
715 |
# torch>=2.0.0
|
716 |
# transformers>=4.30.0
|
717 |
# gradio
|
718 |
# numpy
|
719 |
# accelerate
|
720 |
# spaces
|
721 |
-
# peft
|
|
|
13 |
import numpy as np
|
14 |
import re
|
15 |
import time
|
16 |
+
from typing import List, Tuple
|
17 |
import os
|
18 |
import gc
|
19 |
import spaces
|
|
|
21 |
# Global model variables for memory efficiency
|
22 |
tokenizer = None
|
23 |
model = None
|
|
|
24 |
device = None
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
class ARDiffusionGenerator:
|
27 |
"""Base AR-Diffusion generator with shared functionality"""
|
28 |
|
|
|
52 |
"""
|
53 |
|
54 |
class QualityGenerator(ARDiffusionGenerator):
|
55 |
+
"""Quality-focused AR-Diffusion generator"""
|
56 |
|
57 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
|
58 |
temperature: float = 1.0) -> torch.Tensor:
|
|
|
188 |
start_time = time.time()
|
189 |
|
190 |
for step in range(steps):
|
|
|
|
|
191 |
if progress_callback:
|
192 |
progress = 0.2 + (step / steps) * 0.7
|
193 |
elapsed = time.time() - start_time
|
|
|
214 |
max_replacements = min(3, len(mask_positions))
|
215 |
|
216 |
sorted_positions = sorted(mask_positions.tolist())
|
|
|
217 |
|
218 |
for pos in sorted_positions[:max_replacements]:
|
219 |
if pos < len(logits):
|
|
|
248 |
break
|
249 |
|
250 |
current_ids[pos] = new_token
|
|
|
251 |
total_replacements += 1
|
252 |
|
253 |
if progress_callback:
|
|
|
297 |
return response
|
298 |
|
299 |
class SpeedGenerator(ARDiffusionGenerator):
|
300 |
+
"""Speed-focused AR-Diffusion generator"""
|
301 |
|
302 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
|
303 |
temperature: float = 1.0) -> torch.Tensor:
|
|
|
415 |
# Use mixed precision for speed on GPU
|
416 |
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
|
417 |
for step in range(steps):
|
|
|
|
|
418 |
if progress_callback:
|
419 |
progress = 0.2 + (step / steps) * 0.7
|
420 |
elapsed = time.time() - start_time
|
|
|
436 |
max_replace = min(8, len(mask_pos))
|
437 |
positions = sorted(mask_pos.tolist())[:max_replace]
|
438 |
|
|
|
439 |
for pos in positions:
|
440 |
if pos < len(logits):
|
441 |
token_logits = logits[pos].clone()
|
|
|
462 |
new_token = top_indices[1].item()
|
463 |
|
464 |
current_ids[pos] = new_token
|
|
|
465 |
total_replacements += 1
|
466 |
|
467 |
if progress_callback:
|
|
|
505 |
|
506 |
return response
|
507 |
|
508 |
+
@spaces.GPU
|
509 |
+
def load_model():
|
510 |
+
"""Load model with Zero GPU optimization using @spaces.GPU"""
|
511 |
+
global tokenizer, model, device
|
|
|
512 |
|
513 |
+
if tokenizer is not None and model is not None:
|
514 |
+
return tokenizer, model, device
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
+
try:
|
517 |
+
# This appears to be a LoRA adapter
|
518 |
+
adapter_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
|
519 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
520 |
+
|
521 |
+
print(f"Loading AR-Diffusion model on {device}...")
|
522 |
+
|
523 |
+
# Load tokenizer from adapter
|
524 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_path, trust_remote_code=True)
|
525 |
+
if tokenizer.pad_token is None:
|
526 |
+
tokenizer.pad_token = tokenizer.eos_token
|
527 |
+
|
528 |
+
# Load the adapter model
|
529 |
+
print("Loading adapter model...")
|
530 |
+
model = AutoModelForCausalLM.from_pretrained(
|
531 |
+
adapter_path,
|
532 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
533 |
+
device_map="auto" if device.type == "cuda" else None,
|
534 |
+
trust_remote_code=True,
|
535 |
+
low_cpu_mem_usage=True
|
536 |
+
)
|
537 |
+
|
538 |
+
print("β
AR-Diffusion model loaded successfully!")
|
539 |
+
return tokenizer, model, device
|
540 |
+
|
541 |
+
except Exception as e:
|
542 |
+
print(f"β Error loading {adapter_path}: {e}")
|
543 |
+
|
544 |
+
# Fallback to a working model for demonstration
|
545 |
+
print("π Falling back to demonstration model...")
|
546 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
547 |
+
fallback_model = "gpt2-medium"
|
548 |
+
|
549 |
+
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
550 |
+
if tokenizer.pad_token is None:
|
551 |
+
tokenizer.pad_token = tokenizer.eos_token
|
552 |
+
|
553 |
+
model = AutoModelForCausalLM.from_pretrained(
|
554 |
+
fallback_model,
|
555 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
556 |
+
device_map="auto" if device.type == "cuda" else None,
|
557 |
+
low_cpu_mem_usage=True
|
558 |
+
)
|
559 |
+
|
560 |
+
print(f"β
Fallback model {fallback_model} loaded successfully!")
|
561 |
+
print("β οΈ Note: Using fallback model - AR-Diffusion features may not work as expected")
|
562 |
+
return tokenizer, model, device
|
563 |
|
564 |
def cleanup_memory():
|
565 |
"""Clean up GPU memory"""
|
|
|
589 |
# Generate response with progress callback
|
590 |
def progress_callback(pct, status_msg):
|
591 |
progress(pct)
|
|
|
592 |
|
593 |
response, stats = generator.generate(message, progress_callback)
|
594 |
|
|
|
736 |
show_error=True
|
737 |
)
|
738 |
|
739 |
+
# Requirements.txt should include:
|
740 |
# torch>=2.0.0
|
741 |
# transformers>=4.30.0
|
742 |
# gradio
|
743 |
# numpy
|
744 |
# accelerate
|
745 |
# spaces
|
746 |
+
# peft
|