Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -519,18 +519,7 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
519 |
|
520 |
return response
|
521 |
|
522 |
-
|
523 |
-
def load_model():
|
524 |
-
"""Load model with Zero GPU optimization using @spaces.GPU"""
|
525 |
-
global tokenizer, model, device
|
526 |
-
|
527 |
-
if tokenizer is not None and model is not None:
|
528 |
-
return tokenizer, model, device
|
529 |
-
|
530 |
-
model_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
|
531 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
532 |
-
|
533 |
-
print(f"Loading model on {device}...")
|
534 |
|
535 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
536 |
if tokenizer.pad_token is None:
|
@@ -631,6 +620,7 @@ def create_interface():
|
|
631 |
<p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
|
632 |
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
|
633 |
<p><em>🔥 Powered by Zero GPU with @spaces.GPU</em></p>
|
|
|
634 |
</div>
|
635 |
""")
|
636 |
|
@@ -682,7 +672,8 @@ def create_interface():
|
|
682 |
<h3>ℹ️ About AR-Diffusion</h3>
|
683 |
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
|
684 |
<br>
|
685 |
-
<p><strong>
|
|
|
686 |
</div>
|
687 |
""")
|
688 |
|
@@ -718,4 +709,13 @@ if __name__ == "__main__":
|
|
718 |
server_name="0.0.0.0",
|
719 |
server_port=7860,
|
720 |
show_error=True
|
721 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
return response
|
521 |
|
522 |
+
{device}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
|
524 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
525 |
if tokenizer.pad_token is None:
|
|
|
620 |
<p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
|
621 |
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
|
622 |
<p><em>🔥 Powered by Zero GPU with @spaces.GPU</em></p>
|
623 |
+
<p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
|
624 |
</div>
|
625 |
""")
|
626 |
|
|
|
672 |
<h3>ℹ️ About AR-Diffusion</h3>
|
673 |
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
|
674 |
<br>
|
675 |
+
<p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
|
676 |
+
<p><strong>Note:</strong> This model is experimental and may produce unexpected results. If the specific model fails to load, a fallback model will be used for demonstration.</p>
|
677 |
</div>
|
678 |
""")
|
679 |
|
|
|
709 |
server_name="0.0.0.0",
|
710 |
server_port=7860,
|
711 |
show_error=True
|
712 |
+
)
|
713 |
+
|
714 |
+
# Updated requirements.txt should include:
|
715 |
+
# torch>=2.0.0
|
716 |
+
# transformers>=4.30.0
|
717 |
+
# gradio
|
718 |
+
# numpy
|
719 |
+
# accelerate
|
720 |
+
# spaces
|
721 |
+
# peft # For LoRA adapter support
|