rootxhacker commited on
Commit
b6d0292
·
verified ·
1 Parent(s): eda406d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +720 -0
app.py ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ AR-Diffusion Chat Interface for Hugging Face Spaces
4
+ Experimental model with Quality vs Speed modes
5
+ Optimized for Zero GPU deployment with @spaces.GPU
6
+ """
7
+
8
+ import gradio as gr
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM
12
+ import random
13
+ import numpy as np
14
+ import re
15
+ import time
16
+ from typing import List, Tuple, Generator
17
+ import os
18
+ import gc
19
+ import spaces
20
+
21
+ # Global model variables for memory efficiency
22
+ tokenizer = None
23
+ model = None
24
+ current_generator = None
25
+ device = None
26
+
27
+ def get_noising_schedule(i, max_it, sharpness=5.0):
28
+ """Exponential noise schedule for denoising"""
29
+ x = i / max_it
30
+ return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
31
+
32
+ class ARDiffusionGenerator:
33
+ """Base AR-Diffusion generator with shared functionality"""
34
+
35
+ def __init__(self, tokenizer, model, device):
36
+ self.tokenizer = tokenizer
37
+ self.model = model
38
+ self.device = device
39
+ self.mask_token_id = self._find_mask_token()
40
+
41
+ def _find_mask_token(self) -> int:
42
+ """Find MASK token ID"""
43
+ for candidate in ['MASK', '<mask>', '[MASK]', '<|mask|>']:
44
+ try:
45
+ tokens = self.tokenizer.encode(candidate, add_special_tokens=False)
46
+ if len(tokens) == 1:
47
+ return tokens[0]
48
+ except:
49
+ continue
50
+ return getattr(self.tokenizer, 'unk_token_id', 50257) or 50257
51
+
52
+ def create_prompt(self, instruction: str) -> str:
53
+ """Create Alpaca-style prompt"""
54
+ return f"""### Instruction:
55
+ {instruction}
56
+
57
+ ### Response:
58
+ """
59
+
60
+ class QualityGenerator(ARDiffusionGenerator):
61
+ """Quality-focused AR-Diffusion generator (from first script)"""
62
+
63
+ def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
64
+ temperature: float = 1.0) -> torch.Tensor:
65
+ """Research-grade filtering with proper order"""
66
+ original_shape = logits.shape
67
+ if logits.dim() == 3:
68
+ logits = logits.squeeze(0)
69
+ elif logits.dim() == 1:
70
+ logits = logits.unsqueeze(0)
71
+
72
+ logits = logits.clone()
73
+
74
+ # Temperature scaling first
75
+ if temperature != 1.0:
76
+ logits = logits / temperature
77
+
78
+ # Top-k filtering
79
+ if top_k > 0 and top_k < logits.size(-1):
80
+ topk_vals, _ = torch.topk(logits, top_k, dim=-1)
81
+ thresholds = topk_vals[:, -1].unsqueeze(-1)
82
+ logits = torch.where(logits < thresholds,
83
+ torch.full_like(logits, float("-inf")), logits)
84
+
85
+ # Top-p filtering
86
+ if top_p > 0.0 and top_p < 1.0:
87
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
88
+ probs = torch.softmax(sorted_logits, dim=-1)
89
+ cum_probs = probs.cumsum(dim=-1)
90
+
91
+ mask = cum_probs > top_p
92
+ mask[:, 0] = False
93
+
94
+ scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(
95
+ dim=-1, index=sorted_indices, src=mask)
96
+ logits = torch.where(scatter_mask,
97
+ torch.full_like(logits, float("-inf")), logits)
98
+
99
+ # Restore original shape
100
+ if len(original_shape) == 1:
101
+ logits = logits.squeeze(0)
102
+ elif original_shape[0] == 1 and logits.dim() == 2:
103
+ logits = logits.unsqueeze(0)
104
+
105
+ return logits
106
+
107
+ def generate_start(self, prompt: str, length: int = 8) -> List[int]:
108
+ """Generate natural start"""
109
+ tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
110
+ input_ids = tokens['input_ids'][0]
111
+
112
+ generated = []
113
+ current = input_ids.clone()
114
+
115
+ with torch.no_grad():
116
+ for _ in range(length):
117
+ outputs = self.model(input_ids=current.unsqueeze(0))
118
+ logits = outputs.logits[0, -1]
119
+
120
+ filtered_logits = self.filter_logits(
121
+ logits, top_k=50, top_p=0.9, temperature=0.8
122
+ )
123
+
124
+ probs = F.softmax(filtered_logits, dim=-1)
125
+ next_token = torch.multinomial(probs, 1).item()
126
+
127
+ if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
128
+ break
129
+
130
+ generated.append(next_token)
131
+ current = torch.cat([current, torch.tensor([next_token], device=self.device)])
132
+
133
+ return generated
134
+
135
+ def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
136
+ """Create corrupted sequence for quality mode"""
137
+ prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
138
+ natural_start = self.generate_start(prompt, length=random.randint(8, 12))
139
+
140
+ # Longer sequences for better quality
141
+ prompt_length = len(prompt_tokens)
142
+ if prompt_length > 25:
143
+ num_masks = random.randint(35, 50)
144
+ elif prompt_length > 15:
145
+ num_masks = random.randint(25, 40)
146
+ else:
147
+ num_masks = random.randint(20, 35)
148
+
149
+ sequence = (
150
+ prompt_tokens.tolist() +
151
+ natural_start +
152
+ [self.mask_token_id] * num_masks +
153
+ [13]
154
+ )
155
+
156
+ tensor = torch.tensor(sequence)
157
+ text = self.tokenizer.decode(tensor, skip_special_tokens=False)
158
+ return text, tensor
159
+
160
+ def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
161
+ """Quality generation with progress updates and speed tracking"""
162
+ steps = 40
163
+ temperature = 0.7
164
+ start_time = time.time()
165
+
166
+ if progress_callback:
167
+ progress_callback(0.1, "Creating sequence...")
168
+
169
+ full_prompt = self.create_prompt(prompt)
170
+ corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
171
+
172
+ if progress_callback:
173
+ progress_callback(0.2, "Starting quality denoising...")
174
+
175
+ result, stats = self._denoise_quality(corrupted_ids, steps, temperature, progress_callback)
176
+
177
+ # Calculate overall stats
178
+ total_time = time.time() - start_time
179
+ response = self._clean_response(result)
180
+ word_count = len(response.split())
181
+
182
+ stats.update({
183
+ 'total_time': total_time,
184
+ 'word_count': word_count,
185
+ 'words_per_second': word_count / total_time if total_time > 0 else 0
186
+ })
187
+
188
+ return response, stats
189
+
190
+ def _denoise_quality(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
191
+ """Quality denoising with progress updates and speed tracking"""
192
+ current_ids = corrupted_ids.clone()
193
+ total_replacements = 0
194
+ start_time = time.time()
195
+
196
+ for step in range(steps):
197
+ step_start = time.time()
198
+
199
+ if progress_callback:
200
+ progress = 0.2 + (step / steps) * 0.7
201
+ elapsed = time.time() - start_time
202
+ tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
203
+ progress_callback(progress, f"Quality step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
204
+
205
+ mask_positions = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
206
+
207
+ if len(mask_positions) == 0:
208
+ break
209
+
210
+ with torch.no_grad():
211
+ outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
212
+ logits = outputs.logits[0]
213
+
214
+ current_temp = max(0.4, temperature * (1 - step / steps))
215
+
216
+ # Conservative replacement for quality
217
+ if step < steps // 4:
218
+ max_replacements = min(1, len(mask_positions))
219
+ elif step < steps // 2:
220
+ max_replacements = min(2, len(mask_positions))
221
+ else:
222
+ max_replacements = min(3, len(mask_positions))
223
+
224
+ sorted_positions = sorted(mask_positions.tolist())
225
+ step_replacements = 0
226
+
227
+ for pos in sorted_positions[:max_replacements]:
228
+ if pos < len(logits):
229
+ token_logits = logits[pos].clone()
230
+
231
+ # Anti-repetition
232
+ context_start = max(0, pos - 5)
233
+ recent_tokens = set(current_ids[context_start:pos].tolist())
234
+ for recent_token in recent_tokens:
235
+ if recent_token < len(token_logits):
236
+ token_logits[recent_token] -= 8.0
237
+
238
+ # Quality filtering
239
+ filtered_logits = self.filter_logits(
240
+ token_logits,
241
+ top_k=30,
242
+ top_p=0.75,
243
+ temperature=current_temp
244
+ )
245
+
246
+ probs = F.softmax(filtered_logits, dim=-1)
247
+ probs = torch.clamp(probs, min=1e-8, max=1.0)
248
+ new_token = torch.multinomial(probs, 1).item()
249
+
250
+ # Filter unwanted tokens
251
+ unwanted = [self.mask_token_id, 128001, 128000]
252
+ if new_token in unwanted:
253
+ top_k_vals, top_k_indices = torch.topk(filtered_logits, 10)
254
+ for alternative in top_k_indices:
255
+ if alternative.item() not in unwanted:
256
+ new_token = alternative.item()
257
+ break
258
+
259
+ current_ids[pos] = new_token
260
+ step_replacements += 1
261
+ total_replacements += 1
262
+
263
+ if progress_callback:
264
+ elapsed = time.time() - start_time
265
+ final_speed = total_replacements / elapsed if elapsed > 0 else 0
266
+ progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
267
+
268
+ # Calculate final statistics
269
+ total_time = time.time() - start_time
270
+ stats = {
271
+ 'mode': 'Quality',
272
+ 'steps': steps,
273
+ 'tokens_replaced': total_replacements,
274
+ 'generation_time': total_time,
275
+ 'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
276
+ }
277
+
278
+ result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
279
+ return result, stats
280
+
281
+ def _clean_response(self, text: str) -> str:
282
+ """Clean response for quality output"""
283
+ if "### Response:" in text:
284
+ response = text.split("### Response:")[-1].strip()
285
+ else:
286
+ response = text.strip()
287
+
288
+ if not response:
289
+ return text
290
+
291
+ # Quality cleaning
292
+ response = re.sub(r"'{2,}", "", response)
293
+ response = re.sub(r'"{2,}', "", response)
294
+ response = re.sub(r"\.{2,}", ".", response)
295
+ response = re.sub(r",{2,}", ",", response)
296
+ response = re.sub(r"\s+", " ", response)
297
+
298
+ # Remove artifacts
299
+ response = re.sub(r"\$+", "", response)
300
+ response = re.sub(r"#+", "", response)
301
+ response = re.sub(r"@+", "", response)
302
+
303
+ response = response.strip()
304
+ if response and not response.endswith(('.', '!', '?')):
305
+ response += "."
306
+
307
+ return response
308
+
309
+ class SpeedGenerator(ARDiffusionGenerator):
310
+ """Speed-focused AR-Diffusion generator (from second script)"""
311
+
312
+ def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
313
+ temperature: float = 1.0) -> torch.Tensor:
314
+ """Fast logits filtering"""
315
+ logits = logits.clone()
316
+
317
+ if temperature != 1.0:
318
+ logits = logits / temperature
319
+
320
+ # Top-k filtering
321
+ if top_k > 0 and top_k < logits.size(-1):
322
+ topk_vals, _ = torch.topk(logits, top_k, dim=-1)
323
+ threshold = topk_vals[-1]
324
+ logits = torch.where(logits < threshold, torch.full_like(logits, float("-inf")), logits)
325
+
326
+ # Top-p filtering
327
+ if top_p > 0.0 and top_p < 1.0:
328
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
329
+ probs = torch.softmax(sorted_logits, dim=-1)
330
+ cum_probs = probs.cumsum(dim=-1)
331
+
332
+ mask = cum_probs > top_p
333
+ mask[0] = False
334
+
335
+ scatter_mask = torch.zeros_like(logits, dtype=torch.bool)
336
+ scatter_mask.scatter_(0, sorted_indices, mask)
337
+ logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits)
338
+
339
+ return logits
340
+
341
+ def generate_start(self, prompt: str, length: int = 6) -> List[int]:
342
+ """Generate natural start for speed mode"""
343
+ tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
344
+ input_ids = tokens['input_ids'][0]
345
+
346
+ generated = []
347
+ current = input_ids.clone()
348
+
349
+ with torch.no_grad():
350
+ for _ in range(length):
351
+ outputs = self.model(input_ids=current.unsqueeze(0))
352
+ logits = outputs.logits[0, -1]
353
+
354
+ filtered_logits = self.filter_logits(logits, top_k=20, top_p=0.9, temperature=0.8)
355
+ probs = F.softmax(filtered_logits, dim=-1)
356
+ next_token = torch.multinomial(probs, 1).item()
357
+
358
+ if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
359
+ break
360
+
361
+ generated.append(next_token)
362
+ current = torch.cat([current, torch.tensor([next_token], device=self.device)])
363
+
364
+ return generated
365
+
366
+ def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
367
+ """Create sequence optimized for speed"""
368
+ prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
369
+ natural_start = self.generate_start(prompt, length=6)
370
+
371
+ # Shorter sequences for speed
372
+ prompt_words = len(prompt.split())
373
+ if prompt_words > 8:
374
+ num_masks = random.randint(15, 25)
375
+ else:
376
+ num_masks = random.randint(12, 20)
377
+
378
+ sequence = (
379
+ prompt_tokens.tolist() +
380
+ natural_start +
381
+ [self.mask_token_id] * num_masks +
382
+ [13]
383
+ )
384
+
385
+ tensor = torch.tensor(sequence)
386
+ text = self.tokenizer.decode(tensor, skip_special_tokens=False)
387
+ return text, tensor
388
+
389
+ def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
390
+ """Speed generation with progress updates and speed tracking"""
391
+ steps = 10
392
+ temperature = 0.8
393
+ start_time = time.time()
394
+
395
+ if progress_callback:
396
+ progress_callback(0.1, "Creating sequence...")
397
+
398
+ full_prompt = self.create_prompt(prompt)
399
+ corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
400
+
401
+ if progress_callback:
402
+ progress_callback(0.2, "Starting speed denoising...")
403
+
404
+ result, stats = self._denoise_speed(corrupted_ids, steps, temperature, progress_callback)
405
+
406
+ # Calculate overall stats
407
+ total_time = time.time() - start_time
408
+ response = self._clean_response(result)
409
+ word_count = len(response.split())
410
+
411
+ stats.update({
412
+ 'total_time': total_time,
413
+ 'word_count': word_count,
414
+ 'words_per_second': word_count / total_time if total_time > 0 else 0
415
+ })
416
+
417
+ return response, stats
418
+
419
+ def _denoise_speed(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
420
+ """Ultra-fast denoising with progress updates and speed tracking"""
421
+ current_ids = corrupted_ids.clone()
422
+ total_replacements = 0
423
+ start_time = time.time()
424
+
425
+ # Use mixed precision for speed on GPU
426
+ with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
427
+ for step in range(steps):
428
+ step_start = time.time()
429
+
430
+ if progress_callback:
431
+ progress = 0.2 + (step / steps) * 0.7
432
+ elapsed = time.time() - start_time
433
+ tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
434
+ progress_callback(progress, f"Speed step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
435
+
436
+ mask_pos = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
437
+
438
+ if len(mask_pos) == 0:
439
+ break
440
+
441
+ with torch.no_grad():
442
+ outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
443
+ logits = outputs.logits[0]
444
+
445
+ current_temp = temperature * (0.9 + 0.2 * (step / steps))
446
+
447
+ # Aggressive replacement for speed
448
+ max_replace = min(8, len(mask_pos))
449
+ positions = sorted(mask_pos.tolist())[:max_replace]
450
+
451
+ step_replacements = 0
452
+ for pos in positions:
453
+ if pos < len(logits):
454
+ token_logits = logits[pos].clone()
455
+
456
+ # Light anti-repetition
457
+ recent_start = max(0, pos - 3)
458
+ recent_tokens = set(current_ids[recent_start:pos].tolist())
459
+ for token in recent_tokens:
460
+ if token < len(token_logits):
461
+ token_logits[token] -= 3.0
462
+
463
+ # Fast filtering
464
+ filtered_logits = self.filter_logits(
465
+ token_logits, top_k=12, top_p=0.85, temperature=current_temp
466
+ )
467
+
468
+ probs = F.softmax(filtered_logits, dim=-1)
469
+ probs = torch.clamp(probs, min=1e-8, max=1.0)
470
+ new_token = torch.multinomial(probs, 1).item()
471
+
472
+ # Quick filtering
473
+ if new_token in [self.mask_token_id, 128001, 128000]:
474
+ top_vals, top_indices = torch.topk(filtered_logits, 3)
475
+ new_token = top_indices[1].item()
476
+
477
+ current_ids[pos] = new_token
478
+ step_replacements += 1
479
+ total_replacements += 1
480
+
481
+ if progress_callback:
482
+ elapsed = time.time() - start_time
483
+ final_speed = total_replacements / elapsed if elapsed > 0 else 0
484
+ progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
485
+
486
+ # Calculate final statistics
487
+ total_time = time.time() - start_time
488
+ stats = {
489
+ 'mode': 'Speed',
490
+ 'steps': steps,
491
+ 'tokens_replaced': total_replacements,
492
+ 'generation_time': total_time,
493
+ 'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
494
+ }
495
+
496
+ result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
497
+ return result, stats
498
+
499
+ def _clean_response(self, text: str) -> str:
500
+ """Clean response for speed output"""
501
+ if "### Response:" in text:
502
+ response = text.split("### Response:")[-1].strip()
503
+ else:
504
+ response = text.strip()
505
+
506
+ if not response:
507
+ return text
508
+
509
+ # Minimal cleaning for speed
510
+ response = re.sub(r"'{3,}", "", response)
511
+ response = re.sub(r'"{3,}', "", response)
512
+ response = re.sub(r"\.{3,}", ".", response)
513
+ response = re.sub(r",{3,}", ",", response)
514
+ response = re.sub(r"\s+", " ", response)
515
+
516
+ response = response.strip()
517
+ if response and not response.endswith(('.', '!', '?')):
518
+ response += "."
519
+
520
+ return response
521
+
522
+ @spaces.GPU
523
+ def load_model():
524
+ """Load model with Zero GPU optimization using @spaces.GPU"""
525
+ global tokenizer, model, device
526
+
527
+ if tokenizer is not None and model is not None:
528
+ return tokenizer, model, device
529
+
530
+ model_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
531
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
532
+
533
+ print(f"Loading model on {device}...")
534
+
535
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
536
+ if tokenizer.pad_token is None:
537
+ tokenizer.pad_token = tokenizer.eos_token
538
+
539
+ model = AutoModelForCausalLM.from_pretrained(
540
+ model_path,
541
+ torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
542
+ device_map="auto" if device.type == "cuda" else None,
543
+ trust_remote_code=True,
544
+ low_cpu_mem_usage=True
545
+ )
546
+
547
+ return tokenizer, model, device
548
+
549
+ def cleanup_memory():
550
+ """Clean up GPU memory"""
551
+ if torch.cuda.is_available():
552
+ torch.cuda.empty_cache()
553
+ gc.collect()
554
+
555
+ @spaces.GPU
556
+ def chat_function(message, history, mode, progress=gr.Progress()):
557
+ """Main chat function with @spaces.GPU decorator, progress tracking, and speed display"""
558
+ if not message.strip():
559
+ return history, "", ""
560
+
561
+ try:
562
+ # Load model (this will run on GPU when GPU is allocated)
563
+ progress(0.05, description="Loading model on GPU...")
564
+ tok, mod, dev = load_model()
565
+
566
+ # Create appropriate generator
567
+ if mode == "Quality (Slower, Better)":
568
+ generator = QualityGenerator(tok, mod, dev)
569
+ progress(0.1, description="Initializing quality mode...")
570
+ else:
571
+ generator = SpeedGenerator(tok, mod, dev)
572
+ progress(0.1, description="Initializing speed mode...")
573
+
574
+ # Generate response with progress callback
575
+ def progress_callback(pct, desc):
576
+ progress(pct, description=desc)
577
+
578
+ response, stats = generator.generate(message, progress_callback)
579
+
580
+ progress(1.0, description="Complete!")
581
+
582
+ # Create performance info
583
+ perf_info = f"""**⚡ Performance Stats:**
584
+ - **Mode:** {stats['mode']}
585
+ - **Generation Time:** {stats['generation_time']:.2f}s
586
+ - **Tokens Replaced:** {stats['tokens_replaced']}
587
+ - **Speed:** {stats['tokens_per_second']:.1f} tokens/sec
588
+ - **Words Generated:** {stats['word_count']} words
589
+ - **Words/Second:** {stats['words_per_second']:.1f}
590
+ - **Steps:** {stats['steps']}"""
591
+
592
+ # Update history
593
+ history.append([message, response])
594
+
595
+ # Cleanup memory for Zero GPU efficiency
596
+ cleanup_memory()
597
+
598
+ return history, "", perf_info
599
+
600
+ except Exception as e:
601
+ error_msg = f"Error: {str(e)}"
602
+ history.append([message, error_msg])
603
+ cleanup_memory()
604
+ return history, "", f"**❌ Error occurred during generation**"
605
+
606
+ def clear_chat():
607
+ """Clear chat history and cleanup memory"""
608
+ cleanup_memory()
609
+ return [], ""
610
+
611
+ # Create Gradio interface
612
+ def create_interface():
613
+ with gr.Blocks(
614
+ title="AR-Diffusion Chat - Experimental Model",
615
+ theme=gr.themes.Soft(),
616
+ css="""
617
+ .warning-box {
618
+ background-color: #fff3cd;
619
+ border: 1px solid #ffeaa7;
620
+ border-radius: 5px;
621
+ padding: 10px;
622
+ margin: 10px 0;
623
+ }
624
+ """
625
+ ) as interface:
626
+
627
+ gr.HTML("""
628
+ <div style="text-align: center; margin-bottom: 20px;">
629
+ <h1>🧪 AR-Diffusion Chat Interface</h1>
630
+ <p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
631
+ <p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
632
+ <p><em>🔥 Powered by Zero GPU with @spaces.GPU</em></p>
633
+ </div>
634
+ """)
635
+
636
+ with gr.Row():
637
+ with gr.Column(scale=3):
638
+ chatbot = gr.Chatbot(
639
+ [],
640
+ elem_id="chatbot",
641
+ bubble_full_width=False,
642
+ height=500,
643
+ show_label=False
644
+ )
645
+
646
+ with gr.Row():
647
+ msg = gr.Textbox(
648
+ placeholder="Type your message here...",
649
+ show_label=False,
650
+ scale=9
651
+ )
652
+ send_btn = gr.Button("Send", scale=1, variant="primary")
653
+
654
+ with gr.Row():
655
+ clear_btn = gr.Button("Clear Chat", variant="secondary")
656
+
657
+ with gr.Column(scale=1):
658
+ gr.HTML("""
659
+ <div class="warning-box">
660
+ <h3>⚙️ Mode Selection</h3>
661
+ <p><strong>Quality Mode:</strong> Slower but more coherent responses (~40 steps)</p>
662
+ <p><strong>Speed Mode:</strong> Faster responses with decent quality (~10 steps)</p>
663
+ <p><em>🔥 GPU acceleration via @spaces.GPU</em></p>
664
+ </div>
665
+ """)
666
+
667
+ mode = gr.Radio(
668
+ choices=["Quality (Slower, Better)", "Speed (Faster)"],
669
+ value="Quality (Slower, Better)",
670
+ label="Generation Mode"
671
+ )
672
+
673
+ # Performance display
674
+ perf_display = gr.Markdown(
675
+ "**⚡ Performance Stats:** *Generate a message to see stats*",
676
+ elem_id="performance"
677
+ )
678
+
679
+ gr.HTML("""
680
+ <div class="warning-box">
681
+ <h3>ℹ️ About AR-Diffusion</h3>
682
+ <p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
683
+ <br>
684
+ <p><strong>Note:</strong> This model is experimental and may produce unexpected results.</p>
685
+ </div>
686
+ """)
687
+
688
+ # Event handlers
689
+ def submit_message(message, history, mode):
690
+ return chat_function(message, history, mode)
691
+
692
+ send_btn.click(
693
+ submit_message,
694
+ inputs=[msg, chatbot, mode],
695
+ outputs=[chatbot, msg, perf_display]
696
+ )
697
+
698
+ msg.submit(
699
+ submit_message,
700
+ inputs=[msg, chatbot, mode],
701
+ outputs=[chatbot, msg, perf_display]
702
+ )
703
+
704
+ clear_btn.click(
705
+ clear_chat,
706
+ outputs=[chatbot, perf_display]
707
+ )
708
+
709
+ return interface
710
+
711
+ # Launch interface
712
+ if __name__ == "__main__":
713
+ demo = create_interface()
714
+ demo.queue(max_size=20) # Important for Zero GPU
715
+ demo.launch(
716
+ share=False,
717
+ server_name="0.0.0.0",
718
+ server_port=7860,
719
+ show_error=True
720
+ )