File size: 2,354 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import json
import numpy as np
import os
import tempfile
import unittest
import pycocotools

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json
from detectron2.structures import BoxMode


def make_mask():
    """
    Makes a donut shaped binary mask.
    """
    H = 100
    W = 100
    mask = np.zeros([H, W], dtype=np.uint8)
    for x in range(W):
        for y in range(H):
            d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y]))
            if d > 10 and d < 20:
                mask[y, x] = 1
    return mask


def make_dataset_dicts(mask):
    """
    Returns a list of dicts that represents a single COCO data point for
    object detection. The single instance given by `mask` is represented by
    RLE.
    """
    record = {}
    record["file_name"] = "test"
    record["image_id"] = 0
    record["height"] = mask.shape[0]
    record["width"] = mask.shape[1]

    y, x = np.nonzero(mask)
    segmentation = pycocotools.mask.encode(np.asarray(mask, order="F"))
    min_x = np.min(x)
    max_x = np.max(x)
    min_y = np.min(y)
    max_y = np.max(y)
    obj = {
        "bbox": [min_x, min_y, max_x, max_y],
        "bbox_mode": BoxMode.XYXY_ABS,
        "category_id": 0,
        "iscrowd": 0,
        "segmentation": segmentation,
    }
    record["annotations"] = [obj]
    return [record]


class TestRLEToJson(unittest.TestCase):
    def test(self):
        # Make a dummy dataset.
        mask = make_mask()
        DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask))
        MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"])

        # Dump to json.
        json_dict = convert_to_coco_dict("test_dataset")
        with tempfile.TemporaryDirectory() as tmpdir:
            json_file_name = os.path.join(tmpdir, "test.json")
            with open(json_file_name, "w") as f:
                json.dump(json_dict, f)
            # Load from json.
            dicts = load_coco_json(json_file_name, "")

        # Check the loaded mask matches the original.
        anno = dicts[0]["annotations"][0]
        loaded_mask = pycocotools.mask.decode(anno["segmentation"])
        self.assertTrue(np.array_equal(loaded_mask, mask))