File size: 8,629 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) Facebook, Inc. and its affiliates.

import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import CfgNode
from detectron2.layers import Conv2d

from .registry import ROI_DENSEPOSE_HEAD_REGISTRY


@ROI_DENSEPOSE_HEAD_REGISTRY.register()
class DensePoseDeepLabHead(nn.Module):
    """
    DensePose head using DeepLabV3 model from
    "Rethinking Atrous Convolution for Semantic Image Segmentation"
    <https://arxiv.org/abs/1706.05587>.
    """

    def __init__(self, cfg: CfgNode, input_channels: int):
        super(DensePoseDeepLabHead, self).__init__()
        # fmt: off
        hidden_dim           = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM
        kernel_size          = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL
        norm                 = cfg.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NORM
        self.n_stacked_convs = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS
        self.use_nonlocal    = cfg.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NONLOCAL_ON
        # fmt: on
        pad_size = kernel_size // 2
        n_channels = input_channels

        self.ASPP = ASPP(input_channels, [6, 12, 56], n_channels)  # 6, 12, 56
        self.add_module("ASPP", self.ASPP)

        if self.use_nonlocal:
            self.NLBlock = NONLocalBlock2D(input_channels, bn_layer=True)
            self.add_module("NLBlock", self.NLBlock)
        # weight_init.c2_msra_fill(self.ASPP)

        for i in range(self.n_stacked_convs):
            norm_module = nn.GroupNorm(32, hidden_dim) if norm == "GN" else None
            layer = Conv2d(
                n_channels,
                hidden_dim,
                kernel_size,
                stride=1,
                padding=pad_size,
                bias=not norm,
                norm=norm_module,
            )
            weight_init.c2_msra_fill(layer)
            n_channels = hidden_dim
            layer_name = self._get_layer_name(i)
            self.add_module(layer_name, layer)
        self.n_out_channels = hidden_dim
        # initialize_module_params(self)

    def forward(self, features):
        x0 = features
        x = self.ASPP(x0)
        if self.use_nonlocal:
            x = self.NLBlock(x)
        output = x
        for i in range(self.n_stacked_convs):
            layer_name = self._get_layer_name(i)
            x = getattr(self, layer_name)(x)
            x = F.relu(x)
            output = x
        return output

    def _get_layer_name(self, i: int):
        layer_name = "body_conv_fcn{}".format(i + 1)
        return layer_name


# Copied from
# https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/deeplabv3.py
# See https://arxiv.org/pdf/1706.05587.pdf for details
class ASPPConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, dilation):
        modules = [
            nn.Conv2d(
                in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False
            ),
            nn.GroupNorm(32, out_channels),
            nn.ReLU(),
        ]
        super(ASPPConv, self).__init__(*modules)


class ASPPPooling(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(ASPPPooling, self).__init__(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.GroupNorm(32, out_channels),
            nn.ReLU(),
        )

    def forward(self, x):
        size = x.shape[-2:]
        x = super(ASPPPooling, self).forward(x)
        return F.interpolate(x, size=size, mode="bilinear", align_corners=False)


class ASPP(nn.Module):
    def __init__(self, in_channels, atrous_rates, out_channels):
        super(ASPP, self).__init__()
        modules = []
        modules.append(
            nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1, bias=False),
                nn.GroupNorm(32, out_channels),
                nn.ReLU(),
            )
        )

        rate1, rate2, rate3 = tuple(atrous_rates)
        modules.append(ASPPConv(in_channels, out_channels, rate1))
        modules.append(ASPPConv(in_channels, out_channels, rate2))
        modules.append(ASPPConv(in_channels, out_channels, rate3))
        modules.append(ASPPPooling(in_channels, out_channels))

        self.convs = nn.ModuleList(modules)

        self.project = nn.Sequential(
            nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
            # nn.BatchNorm2d(out_channels),
            nn.ReLU()
            # nn.Dropout(0.5)
        )

    def forward(self, x):
        res = []
        for conv in self.convs:
            res.append(conv(x))
        res = torch.cat(res, dim=1)
        return self.project(res)


# copied from
# https://github.com/AlexHex7/Non-local_pytorch/blob/master/lib/non_local_embedded_gaussian.py
# See https://arxiv.org/abs/1711.07971 for details
class _NonLocalBlockND(nn.Module):
    def __init__(
        self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True
    ):
        super(_NonLocalBlockND, self).__init__()

        assert dimension in [1, 2, 3]

        self.dimension = dimension
        self.sub_sample = sub_sample

        self.in_channels = in_channels
        self.inter_channels = inter_channels

        if self.inter_channels is None:
            self.inter_channels = in_channels // 2
            if self.inter_channels == 0:
                self.inter_channels = 1

        if dimension == 3:
            conv_nd = nn.Conv3d
            max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
            bn = nn.GroupNorm  # (32, hidden_dim) #nn.BatchNorm3d
        elif dimension == 2:
            conv_nd = nn.Conv2d
            max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
            bn = nn.GroupNorm  # (32, hidden_dim)nn.BatchNorm2d
        else:
            conv_nd = nn.Conv1d
            max_pool_layer = nn.MaxPool1d(kernel_size=2)
            bn = nn.GroupNorm  # (32, hidden_dim)nn.BatchNorm1d

        self.g = conv_nd(
            in_channels=self.in_channels,
            out_channels=self.inter_channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )

        if bn_layer:
            self.W = nn.Sequential(
                conv_nd(
                    in_channels=self.inter_channels,
                    out_channels=self.in_channels,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                ),
                bn(32, self.in_channels),
            )
            nn.init.constant_(self.W[1].weight, 0)
            nn.init.constant_(self.W[1].bias, 0)
        else:
            self.W = conv_nd(
                in_channels=self.inter_channels,
                out_channels=self.in_channels,
                kernel_size=1,
                stride=1,
                padding=0,
            )
            nn.init.constant_(self.W.weight, 0)
            nn.init.constant_(self.W.bias, 0)

        self.theta = conv_nd(
            in_channels=self.in_channels,
            out_channels=self.inter_channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )
        self.phi = conv_nd(
            in_channels=self.in_channels,
            out_channels=self.inter_channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )

        if sub_sample:
            self.g = nn.Sequential(self.g, max_pool_layer)
            self.phi = nn.Sequential(self.phi, max_pool_layer)

    def forward(self, x):
        """
        :param x: (b, c, t, h, w)
        :return:
        """

        batch_size = x.size(0)

        g_x = self.g(x).view(batch_size, self.inter_channels, -1)
        g_x = g_x.permute(0, 2, 1)

        theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
        theta_x = theta_x.permute(0, 2, 1)
        phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
        f = torch.matmul(theta_x, phi_x)
        f_div_C = F.softmax(f, dim=-1)

        y = torch.matmul(f_div_C, g_x)
        y = y.permute(0, 2, 1).contiguous()
        y = y.view(batch_size, self.inter_channels, *x.size()[2:])
        W_y = self.W(y)
        z = W_y + x

        return z


class NONLocalBlock2D(_NonLocalBlockND):
    def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):
        super(NONLocalBlock2D, self).__init__(
            in_channels,
            inter_channels=inter_channels,
            dimension=2,
            sub_sample=sub_sample,
            bn_layer=bn_layer,
        )