Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import logging | |
import numpy as np | |
from collections import UserDict, defaultdict | |
from dataclasses import dataclass | |
from typing import Any, Callable, Collection, Dict, Iterable, List, Optional, Sequence, Tuple | |
import torch | |
from torch.utils.data.dataset import Dataset | |
from detectron2.config import CfgNode | |
from detectron2.data.build import build_detection_test_loader as d2_build_detection_test_loader | |
from detectron2.data.build import build_detection_train_loader as d2_build_detection_train_loader | |
from detectron2.data.build import ( | |
load_proposals_into_dataset, | |
print_instances_class_histogram, | |
trivial_batch_collator, | |
worker_init_reset_seed, | |
) | |
from detectron2.data.catalog import DatasetCatalog, Metadata, MetadataCatalog | |
from detectron2.data.samplers import TrainingSampler | |
from detectron2.utils.comm import get_world_size | |
from densepose.config import get_bootstrap_dataset_config | |
from densepose.modeling import build_densepose_embedder | |
from .combined_loader import CombinedDataLoader, Loader | |
from .dataset_mapper import DatasetMapper | |
from .datasets.coco import DENSEPOSE_CSE_KEYS_WITHOUT_MASK, DENSEPOSE_IUV_KEYS_WITHOUT_MASK | |
from .datasets.dataset_type import DatasetType | |
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter | |
from .samplers import ( | |
DensePoseConfidenceBasedSampler, | |
DensePoseCSEConfidenceBasedSampler, | |
DensePoseCSEUniformSampler, | |
DensePoseUniformSampler, | |
MaskFromDensePoseSampler, | |
PredictionToGroundTruthSampler, | |
) | |
from .transform import ImageResizeTransform | |
from .utils import get_category_to_class_mapping, get_class_to_mesh_name_mapping | |
from .video import ( | |
FirstKFramesSelector, | |
FrameSelectionStrategy, | |
LastKFramesSelector, | |
RandomKFramesSelector, | |
VideoKeyframeDataset, | |
video_list_from_file, | |
) | |
__all__ = ["build_detection_train_loader", "build_detection_test_loader"] | |
Instance = Dict[str, Any] | |
InstancePredicate = Callable[[Instance], bool] | |
def _compute_num_images_per_worker(cfg: CfgNode) -> int: | |
num_workers = get_world_size() | |
images_per_batch = cfg.SOLVER.IMS_PER_BATCH | |
assert ( | |
images_per_batch % num_workers == 0 | |
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format( | |
images_per_batch, num_workers | |
) | |
assert ( | |
images_per_batch >= num_workers | |
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format( | |
images_per_batch, num_workers | |
) | |
images_per_worker = images_per_batch // num_workers | |
return images_per_worker | |
def _map_category_id_to_contiguous_id(dataset_name: str, dataset_dicts: Iterable[Instance]) -> None: | |
meta = MetadataCatalog.get(dataset_name) | |
for dataset_dict in dataset_dicts: | |
for ann in dataset_dict["annotations"]: | |
ann["category_id"] = meta.thing_dataset_id_to_contiguous_id[ann["category_id"]] | |
class _DatasetCategory: | |
""" | |
Class representing category data in a dataset: | |
- id: category ID, as specified in the dataset annotations file | |
- name: category name, as specified in the dataset annotations file | |
- mapped_id: category ID after applying category maps (DATASETS.CATEGORY_MAPS config option) | |
- mapped_name: category name after applying category maps | |
- dataset_name: dataset in which the category is defined | |
For example, when training models in a class-agnostic manner, one could take LVIS 1.0 | |
dataset and map the animal categories to the same category as human data from COCO: | |
id = 225 | |
name = "cat" | |
mapped_id = 1 | |
mapped_name = "person" | |
dataset_name = "lvis_v1_animals_dp_train" | |
""" | |
id: int | |
name: str | |
mapped_id: int | |
mapped_name: str | |
dataset_name: str | |
_MergedCategoriesT = Dict[int, List[_DatasetCategory]] | |
def _add_category_id_to_contiguous_id_maps_to_metadata( | |
merged_categories: _MergedCategoriesT, | |
) -> None: | |
merged_categories_per_dataset = {} | |
for contiguous_cat_id, cat_id in enumerate(sorted(merged_categories.keys())): | |
for cat in merged_categories[cat_id]: | |
if cat.dataset_name not in merged_categories_per_dataset: | |
merged_categories_per_dataset[cat.dataset_name] = defaultdict(list) | |
merged_categories_per_dataset[cat.dataset_name][cat_id].append( | |
( | |
contiguous_cat_id, | |
cat, | |
) | |
) | |
logger = logging.getLogger(__name__) | |
for dataset_name, merged_categories in merged_categories_per_dataset.items(): | |
meta = MetadataCatalog.get(dataset_name) | |
if not hasattr(meta, "thing_classes"): | |
meta.thing_classes = [] | |
meta.thing_dataset_id_to_contiguous_id = {} | |
meta.thing_dataset_id_to_merged_id = {} | |
else: | |
meta.thing_classes.clear() | |
meta.thing_dataset_id_to_contiguous_id.clear() | |
meta.thing_dataset_id_to_merged_id.clear() | |
logger.info(f"Dataset {dataset_name}: category ID to contiguous ID mapping:") | |
for _cat_id, categories in sorted(merged_categories.items()): | |
added_to_thing_classes = False | |
for contiguous_cat_id, cat in categories: | |
if not added_to_thing_classes: | |
meta.thing_classes.append(cat.mapped_name) | |
added_to_thing_classes = True | |
meta.thing_dataset_id_to_contiguous_id[cat.id] = contiguous_cat_id | |
meta.thing_dataset_id_to_merged_id[cat.id] = cat.mapped_id | |
logger.info(f"{cat.id} ({cat.name}) -> {contiguous_cat_id}") | |
def _maybe_create_general_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: | |
def has_annotations(instance: Instance) -> bool: | |
return "annotations" in instance | |
def has_only_crowd_anotations(instance: Instance) -> bool: | |
for ann in instance["annotations"]: | |
if ann.get("is_crowd", 0) == 0: | |
return False | |
return True | |
def general_keep_instance_predicate(instance: Instance) -> bool: | |
return has_annotations(instance) and not has_only_crowd_anotations(instance) | |
if not cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS: | |
return None | |
return general_keep_instance_predicate | |
def _maybe_create_keypoints_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: | |
min_num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE | |
def has_sufficient_num_keypoints(instance: Instance) -> bool: | |
num_kpts = sum( | |
(np.array(ann["keypoints"][2::3]) > 0).sum() | |
for ann in instance["annotations"] | |
if "keypoints" in ann | |
) | |
return num_kpts >= min_num_keypoints | |
if cfg.MODEL.KEYPOINT_ON and (min_num_keypoints > 0): | |
return has_sufficient_num_keypoints | |
return None | |
def _maybe_create_mask_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: | |
if not cfg.MODEL.MASK_ON: | |
return None | |
def has_mask_annotations(instance: Instance) -> bool: | |
return any("segmentation" in ann for ann in instance["annotations"]) | |
return has_mask_annotations | |
def _maybe_create_densepose_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: | |
if not cfg.MODEL.DENSEPOSE_ON: | |
return None | |
use_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS | |
def has_densepose_annotations(instance: Instance) -> bool: | |
for ann in instance["annotations"]: | |
if all(key in ann for key in DENSEPOSE_IUV_KEYS_WITHOUT_MASK) or all( | |
key in ann for key in DENSEPOSE_CSE_KEYS_WITHOUT_MASK | |
): | |
return True | |
if use_masks and "segmentation" in ann: | |
return True | |
return False | |
return has_densepose_annotations | |
def _maybe_create_specific_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]: | |
specific_predicate_creators = [ | |
_maybe_create_keypoints_keep_instance_predicate, | |
_maybe_create_mask_keep_instance_predicate, | |
_maybe_create_densepose_keep_instance_predicate, | |
] | |
predicates = [creator(cfg) for creator in specific_predicate_creators] | |
predicates = [p for p in predicates if p is not None] | |
if not predicates: | |
return None | |
def combined_predicate(instance: Instance) -> bool: | |
return any(p(instance) for p in predicates) | |
return combined_predicate | |
def _get_train_keep_instance_predicate(cfg: CfgNode): | |
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg) | |
combined_specific_keep_predicate = _maybe_create_specific_keep_instance_predicate(cfg) | |
def combined_general_specific_keep_predicate(instance: Instance) -> bool: | |
return general_keep_predicate(instance) and combined_specific_keep_predicate(instance) | |
if (general_keep_predicate is None) and (combined_specific_keep_predicate is None): | |
return None | |
if general_keep_predicate is None: | |
return combined_specific_keep_predicate | |
if combined_specific_keep_predicate is None: | |
return general_keep_predicate | |
return combined_general_specific_keep_predicate | |
def _get_test_keep_instance_predicate(cfg: CfgNode): | |
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg) | |
return general_keep_predicate | |
def _maybe_filter_and_map_categories( | |
dataset_name: str, dataset_dicts: List[Instance] | |
) -> List[Instance]: | |
meta = MetadataCatalog.get(dataset_name) | |
category_id_map = meta.thing_dataset_id_to_contiguous_id | |
filtered_dataset_dicts = [] | |
for dataset_dict in dataset_dicts: | |
anns = [] | |
for ann in dataset_dict["annotations"]: | |
cat_id = ann["category_id"] | |
if cat_id not in category_id_map: | |
continue | |
ann["category_id"] = category_id_map[cat_id] | |
anns.append(ann) | |
dataset_dict["annotations"] = anns | |
filtered_dataset_dicts.append(dataset_dict) | |
return filtered_dataset_dicts | |
def _add_category_whitelists_to_metadata(cfg: CfgNode) -> None: | |
for dataset_name, whitelisted_cat_ids in cfg.DATASETS.WHITELISTED_CATEGORIES.items(): | |
meta = MetadataCatalog.get(dataset_name) | |
meta.whitelisted_categories = whitelisted_cat_ids | |
logger = logging.getLogger(__name__) | |
logger.info( | |
"Whitelisted categories for dataset {}: {}".format( | |
dataset_name, meta.whitelisted_categories | |
) | |
) | |
def _add_category_maps_to_metadata(cfg: CfgNode) -> None: | |
for dataset_name, category_map in cfg.DATASETS.CATEGORY_MAPS.items(): | |
category_map = { | |
int(cat_id_src): int(cat_id_dst) for cat_id_src, cat_id_dst in category_map.items() | |
} | |
meta = MetadataCatalog.get(dataset_name) | |
meta.category_map = category_map | |
logger = logging.getLogger(__name__) | |
logger.info("Category maps for dataset {}: {}".format(dataset_name, meta.category_map)) | |
def _add_category_info_to_bootstrapping_metadata(dataset_name: str, dataset_cfg: CfgNode) -> None: | |
meta = MetadataCatalog.get(dataset_name) | |
meta.category_to_class_mapping = get_category_to_class_mapping(dataset_cfg) | |
meta.categories = dataset_cfg.CATEGORIES | |
meta.max_count_per_category = dataset_cfg.MAX_COUNT_PER_CATEGORY | |
logger = logging.getLogger(__name__) | |
logger.info( | |
"Category to class mapping for dataset {}: {}".format( | |
dataset_name, meta.category_to_class_mapping | |
) | |
) | |
def _maybe_add_class_to_mesh_name_map_to_metadata(dataset_names: List[str], cfg: CfgNode) -> None: | |
for dataset_name in dataset_names: | |
meta = MetadataCatalog.get(dataset_name) | |
if not hasattr(meta, "class_to_mesh_name"): | |
meta.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) | |
def _merge_categories(dataset_names: Collection[str]) -> _MergedCategoriesT: | |
merged_categories = defaultdict(list) | |
category_names = {} | |
for dataset_name in dataset_names: | |
meta = MetadataCatalog.get(dataset_name) | |
whitelisted_categories = meta.get("whitelisted_categories") | |
category_map = meta.get("category_map", {}) | |
cat_ids = ( | |
whitelisted_categories if whitelisted_categories is not None else meta.categories.keys() | |
) | |
for cat_id in cat_ids: | |
cat_name = meta.categories[cat_id] | |
cat_id_mapped = category_map.get(cat_id, cat_id) | |
if cat_id_mapped == cat_id or cat_id_mapped in cat_ids: | |
category_names[cat_id] = cat_name | |
else: | |
category_names[cat_id] = str(cat_id_mapped) | |
# assign temporary mapped category name, this name can be changed | |
# during the second pass, since mapped ID can correspond to a category | |
# from a different dataset | |
cat_name_mapped = meta.categories[cat_id_mapped] | |
merged_categories[cat_id_mapped].append( | |
_DatasetCategory( | |
id=cat_id, | |
name=cat_name, | |
mapped_id=cat_id_mapped, | |
mapped_name=cat_name_mapped, | |
dataset_name=dataset_name, | |
) | |
) | |
# second pass to assign proper mapped category names | |
for cat_id, categories in merged_categories.items(): | |
for cat in categories: | |
if cat_id in category_names and cat.mapped_name != category_names[cat_id]: | |
cat.mapped_name = category_names[cat_id] | |
return merged_categories | |
def _warn_if_merged_different_categories(merged_categories: _MergedCategoriesT) -> None: | |
logger = logging.getLogger(__name__) | |
for cat_id in merged_categories: | |
merged_categories_i = merged_categories[cat_id] | |
first_cat_name = merged_categories_i[0].name | |
if len(merged_categories_i) > 1 and not all( | |
cat.name == first_cat_name for cat in merged_categories_i[1:] | |
): | |
cat_summary_str = ", ".join( | |
[f"{cat.id} ({cat.name}) from {cat.dataset_name}" for cat in merged_categories_i] | |
) | |
logger.warning( | |
f"Merged category {cat_id} corresponds to the following categories: " | |
f"{cat_summary_str}" | |
) | |
def combine_detection_dataset_dicts( | |
dataset_names: Collection[str], | |
keep_instance_predicate: Optional[InstancePredicate] = None, | |
proposal_files: Optional[Collection[str]] = None, | |
) -> List[Instance]: | |
""" | |
Load and prepare dataset dicts for training / testing | |
Args: | |
dataset_names (Collection[str]): a list of dataset names | |
keep_instance_predicate (Callable: Dict[str, Any] -> bool): predicate | |
applied to instance dicts which defines whether to keep the instance | |
proposal_files (Collection[str]): if given, a list of object proposal files | |
that match each dataset in `dataset_names`. | |
""" | |
assert len(dataset_names) | |
if proposal_files is None: | |
proposal_files = [None] * len(dataset_names) | |
assert len(dataset_names) == len(proposal_files) | |
# load datasets and metadata | |
dataset_name_to_dicts = {} | |
for dataset_name in dataset_names: | |
dataset_name_to_dicts[dataset_name] = DatasetCatalog.get(dataset_name) | |
assert len(dataset_name_to_dicts), f"Dataset '{dataset_name}' is empty!" | |
# merge categories, requires category metadata to be loaded | |
# cat_id -> [(orig_cat_id, cat_name, dataset_name)] | |
merged_categories = _merge_categories(dataset_names) | |
_warn_if_merged_different_categories(merged_categories) | |
merged_category_names = [ | |
merged_categories[cat_id][0].mapped_name for cat_id in sorted(merged_categories) | |
] | |
# map to contiguous category IDs | |
_add_category_id_to_contiguous_id_maps_to_metadata(merged_categories) | |
# load annotations and dataset metadata | |
for dataset_name, proposal_file in zip(dataset_names, proposal_files): | |
dataset_dicts = dataset_name_to_dicts[dataset_name] | |
assert len(dataset_dicts), f"Dataset '{dataset_name}' is empty!" | |
if proposal_file is not None: | |
dataset_dicts = load_proposals_into_dataset(dataset_dicts, proposal_file) | |
dataset_dicts = _maybe_filter_and_map_categories(dataset_name, dataset_dicts) | |
print_instances_class_histogram(dataset_dicts, merged_category_names) | |
dataset_name_to_dicts[dataset_name] = dataset_dicts | |
if keep_instance_predicate is not None: | |
all_datasets_dicts_plain = [ | |
d | |
for d in itertools.chain.from_iterable(dataset_name_to_dicts.values()) | |
if keep_instance_predicate(d) | |
] | |
else: | |
all_datasets_dicts_plain = list( | |
itertools.chain.from_iterable(dataset_name_to_dicts.values()) | |
) | |
return all_datasets_dicts_plain | |
def build_detection_train_loader(cfg: CfgNode, mapper=None): | |
""" | |
A data loader is created in a way similar to that of Detectron2. | |
The main differences are: | |
- it allows to combine datasets with different but compatible object category sets | |
The data loader is created by the following steps: | |
1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts. | |
2. Start workers to work on the dicts. Each worker will: | |
* Map each metadata dict into another format to be consumed by the model. | |
* Batch them by simply putting dicts into a list. | |
The batched ``list[mapped_dict]`` is what this dataloader will return. | |
Args: | |
cfg (CfgNode): the config | |
mapper (callable): a callable which takes a sample (dict) from dataset and | |
returns the format to be consumed by the model. | |
By default it will be `DatasetMapper(cfg, True)`. | |
Returns: | |
an infinite iterator of training data | |
""" | |
_add_category_whitelists_to_metadata(cfg) | |
_add_category_maps_to_metadata(cfg) | |
_maybe_add_class_to_mesh_name_map_to_metadata(cfg.DATASETS.TRAIN, cfg) | |
dataset_dicts = combine_detection_dataset_dicts( | |
cfg.DATASETS.TRAIN, | |
keep_instance_predicate=_get_train_keep_instance_predicate(cfg), | |
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, | |
) | |
if mapper is None: | |
mapper = DatasetMapper(cfg, True) | |
return d2_build_detection_train_loader(cfg, dataset=dataset_dicts, mapper=mapper) | |
def build_detection_test_loader(cfg, dataset_name, mapper=None): | |
""" | |
Similar to `build_detection_train_loader`. | |
But this function uses the given `dataset_name` argument (instead of the names in cfg), | |
and uses batch size 1. | |
Args: | |
cfg: a detectron2 CfgNode | |
dataset_name (str): a name of the dataset that's available in the DatasetCatalog | |
mapper (callable): a callable which takes a sample (dict) from dataset | |
and returns the format to be consumed by the model. | |
By default it will be `DatasetMapper(cfg, False)`. | |
Returns: | |
DataLoader: a torch DataLoader, that loads the given detection | |
dataset, with test-time transformation and batching. | |
""" | |
_add_category_whitelists_to_metadata(cfg) | |
_add_category_maps_to_metadata(cfg) | |
_maybe_add_class_to_mesh_name_map_to_metadata([dataset_name], cfg) | |
dataset_dicts = combine_detection_dataset_dicts( | |
[dataset_name], | |
keep_instance_predicate=_get_test_keep_instance_predicate(cfg), | |
proposal_files=[ | |
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)] | |
] | |
if cfg.MODEL.LOAD_PROPOSALS | |
else None, | |
) | |
sampler = None | |
if not cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE: | |
sampler = torch.utils.data.SequentialSampler(dataset_dicts) | |
if mapper is None: | |
mapper = DatasetMapper(cfg, False) | |
return d2_build_detection_test_loader( | |
dataset_dicts, mapper=mapper, num_workers=cfg.DATALOADER.NUM_WORKERS, sampler=sampler | |
) | |
def build_frame_selector(cfg: CfgNode): | |
strategy = FrameSelectionStrategy(cfg.STRATEGY) | |
if strategy == FrameSelectionStrategy.RANDOM_K: | |
frame_selector = RandomKFramesSelector(cfg.NUM_IMAGES) | |
elif strategy == FrameSelectionStrategy.FIRST_K: | |
frame_selector = FirstKFramesSelector(cfg.NUM_IMAGES) | |
elif strategy == FrameSelectionStrategy.LAST_K: | |
frame_selector = LastKFramesSelector(cfg.NUM_IMAGES) | |
elif strategy == FrameSelectionStrategy.ALL: | |
frame_selector = None | |
# pyre-fixme[61]: `frame_selector` may not be initialized here. | |
return frame_selector | |
def build_transform(cfg: CfgNode, data_type: str): | |
if cfg.TYPE == "resize": | |
if data_type == "image": | |
return ImageResizeTransform(cfg.MIN_SIZE, cfg.MAX_SIZE) | |
raise ValueError(f"Unknown transform {cfg.TYPE} for data type {data_type}") | |
def build_combined_loader(cfg: CfgNode, loaders: Collection[Loader], ratios: Sequence[float]): | |
images_per_worker = _compute_num_images_per_worker(cfg) | |
return CombinedDataLoader(loaders, images_per_worker, ratios) | |
def build_bootstrap_dataset(dataset_name: str, cfg: CfgNode) -> Sequence[torch.Tensor]: | |
""" | |
Build dataset that provides data to bootstrap on | |
Args: | |
dataset_name (str): Name of the dataset, needs to have associated metadata | |
to load the data | |
cfg (CfgNode): bootstrapping config | |
Returns: | |
Sequence[Tensor] - dataset that provides image batches, Tensors of size | |
[N, C, H, W] of type float32 | |
""" | |
logger = logging.getLogger(__name__) | |
_add_category_info_to_bootstrapping_metadata(dataset_name, cfg) | |
meta = MetadataCatalog.get(dataset_name) | |
factory = BootstrapDatasetFactoryCatalog.get(meta.dataset_type) | |
dataset = None | |
if factory is not None: | |
dataset = factory(meta, cfg) | |
if dataset is None: | |
logger.warning(f"Failed to create dataset {dataset_name} of type {meta.dataset_type}") | |
return dataset | |
def build_data_sampler(cfg: CfgNode, sampler_cfg: CfgNode, embedder: Optional[torch.nn.Module]): | |
if sampler_cfg.TYPE == "densepose_uniform": | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseUniformSampler(count_per_class=sampler_cfg.COUNT_PER_CLASS), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
elif sampler_cfg.TYPE == "densepose_UV_confidence": | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseConfidenceBasedSampler( | |
confidence_channel="sigma_2", | |
count_per_class=sampler_cfg.COUNT_PER_CLASS, | |
search_proportion=0.5, | |
), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
elif sampler_cfg.TYPE == "densepose_fine_segm_confidence": | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseConfidenceBasedSampler( | |
confidence_channel="fine_segm_confidence", | |
count_per_class=sampler_cfg.COUNT_PER_CLASS, | |
search_proportion=0.5, | |
), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
elif sampler_cfg.TYPE == "densepose_coarse_segm_confidence": | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseConfidenceBasedSampler( | |
confidence_channel="coarse_segm_confidence", | |
count_per_class=sampler_cfg.COUNT_PER_CLASS, | |
search_proportion=0.5, | |
), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
elif sampler_cfg.TYPE == "densepose_cse_uniform": | |
assert embedder is not None | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseCSEUniformSampler( | |
cfg=cfg, | |
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES, | |
embedder=embedder, | |
count_per_class=sampler_cfg.COUNT_PER_CLASS, | |
), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
elif sampler_cfg.TYPE == "densepose_cse_coarse_segm_confidence": | |
assert embedder is not None | |
data_sampler = PredictionToGroundTruthSampler() | |
# transform densepose pred -> gt | |
data_sampler.register_sampler( | |
"pred_densepose", | |
"gt_densepose", | |
DensePoseCSEConfidenceBasedSampler( | |
cfg=cfg, | |
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES, | |
embedder=embedder, | |
confidence_channel="coarse_segm_confidence", | |
count_per_class=sampler_cfg.COUNT_PER_CLASS, | |
search_proportion=0.5, | |
), | |
) | |
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler()) | |
return data_sampler | |
raise ValueError(f"Unknown data sampler type {sampler_cfg.TYPE}") | |
def build_data_filter(cfg: CfgNode): | |
if cfg.TYPE == "detection_score": | |
min_score = cfg.MIN_VALUE | |
return ScoreBasedFilter(min_score=min_score) | |
raise ValueError(f"Unknown data filter type {cfg.TYPE}") | |
def build_inference_based_loader( | |
cfg: CfgNode, | |
dataset_cfg: CfgNode, | |
model: torch.nn.Module, | |
embedder: Optional[torch.nn.Module] = None, | |
) -> InferenceBasedLoader: | |
""" | |
Constructs data loader based on inference results of a model. | |
""" | |
dataset = build_bootstrap_dataset(dataset_cfg.DATASET, dataset_cfg.IMAGE_LOADER) | |
meta = MetadataCatalog.get(dataset_cfg.DATASET) | |
training_sampler = TrainingSampler(len(dataset)) | |
data_loader = torch.utils.data.DataLoader( | |
dataset, # pyre-ignore[6] | |
batch_size=dataset_cfg.IMAGE_LOADER.BATCH_SIZE, | |
sampler=training_sampler, | |
num_workers=dataset_cfg.IMAGE_LOADER.NUM_WORKERS, | |
collate_fn=trivial_batch_collator, | |
worker_init_fn=worker_init_reset_seed, | |
) | |
return InferenceBasedLoader( | |
model, | |
data_loader=data_loader, | |
data_sampler=build_data_sampler(cfg, dataset_cfg.DATA_SAMPLER, embedder), | |
data_filter=build_data_filter(dataset_cfg.FILTER), | |
shuffle=True, | |
batch_size=dataset_cfg.INFERENCE.OUTPUT_BATCH_SIZE, | |
inference_batch_size=dataset_cfg.INFERENCE.INPUT_BATCH_SIZE, | |
category_to_class_mapping=meta.category_to_class_mapping, | |
) | |
def has_inference_based_loaders(cfg: CfgNode) -> bool: | |
""" | |
Returns True, if at least one inferense-based loader must | |
be instantiated for training | |
""" | |
return len(cfg.BOOTSTRAP_DATASETS) > 0 | |
def build_inference_based_loaders( | |
cfg: CfgNode, model: torch.nn.Module | |
) -> Tuple[List[InferenceBasedLoader], List[float]]: | |
loaders = [] | |
ratios = [] | |
embedder = build_densepose_embedder(cfg).to(device=model.device) # pyre-ignore[16] | |
for dataset_spec in cfg.BOOTSTRAP_DATASETS: | |
dataset_cfg = get_bootstrap_dataset_config().clone() | |
dataset_cfg.merge_from_other_cfg(CfgNode(dataset_spec)) | |
loader = build_inference_based_loader(cfg, dataset_cfg, model, embedder) | |
loaders.append(loader) | |
ratios.append(dataset_cfg.RATIO) | |
return loaders, ratios | |
def build_video_list_dataset(meta: Metadata, cfg: CfgNode): | |
video_list_fpath = meta.video_list_fpath | |
video_base_path = meta.video_base_path | |
category = meta.category | |
if cfg.TYPE == "video_keyframe": | |
frame_selector = build_frame_selector(cfg.SELECT) | |
transform = build_transform(cfg.TRANSFORM, data_type="image") | |
video_list = video_list_from_file(video_list_fpath, video_base_path) | |
keyframe_helper_fpath = getattr(cfg, "KEYFRAME_HELPER", None) | |
return VideoKeyframeDataset( | |
video_list, category, frame_selector, transform, keyframe_helper_fpath | |
) | |
class _BootstrapDatasetFactoryCatalog(UserDict): | |
""" | |
A global dictionary that stores information about bootstrapped datasets creation functions | |
from metadata and config, for diverse DatasetType | |
""" | |
def register(self, dataset_type: DatasetType, factory: Callable[[Metadata, CfgNode], Dataset]): | |
""" | |
Args: | |
dataset_type (DatasetType): a DatasetType e.g. DatasetType.VIDEO_LIST | |
factory (Callable[Metadata, CfgNode]): a callable which takes Metadata and cfg | |
arguments and returns a dataset object. | |
""" | |
assert dataset_type not in self, "Dataset '{}' is already registered!".format(dataset_type) | |
self[dataset_type] = factory | |
BootstrapDatasetFactoryCatalog = _BootstrapDatasetFactoryCatalog() | |
BootstrapDatasetFactoryCatalog.register(DatasetType.VIDEO_LIST, build_video_list_dataset) | |