Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import functools | |
import io | |
import struct | |
import types | |
import torch | |
from detectron2.modeling import meta_arch | |
from detectron2.modeling.box_regression import Box2BoxTransform | |
from detectron2.modeling.roi_heads import keypoint_head | |
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes | |
from .c10 import Caffe2Compatible | |
from .caffe2_patch import ROIHeadsPatcher, patch_generalized_rcnn | |
from .shared import ( | |
alias, | |
check_set_pb_arg, | |
get_pb_arg_floats, | |
get_pb_arg_valf, | |
get_pb_arg_vali, | |
get_pb_arg_vals, | |
mock_torch_nn_functional_interpolate, | |
) | |
def assemble_rcnn_outputs_by_name(image_sizes, tensor_outputs, force_mask_on=False): | |
""" | |
A function to assemble caffe2 model's outputs (i.e. Dict[str, Tensor]) | |
to detectron2's format (i.e. list of Instances instance). | |
This only works when the model follows the Caffe2 detectron's naming convention. | |
Args: | |
image_sizes (List[List[int, int]]): [H, W] of every image. | |
tensor_outputs (Dict[str, Tensor]): external_output to its tensor. | |
force_mask_on (Bool): if true, the it make sure there'll be pred_masks even | |
if the mask is not found from tensor_outputs (usually due to model crash) | |
""" | |
results = [Instances(image_size) for image_size in image_sizes] | |
batch_splits = tensor_outputs.get("batch_splits", None) | |
if batch_splits: | |
raise NotImplementedError() | |
assert len(image_sizes) == 1 | |
result = results[0] | |
bbox_nms = tensor_outputs["bbox_nms"] | |
score_nms = tensor_outputs["score_nms"] | |
class_nms = tensor_outputs["class_nms"] | |
# Detection will always success because Conv support 0-batch | |
assert bbox_nms is not None | |
assert score_nms is not None | |
assert class_nms is not None | |
if bbox_nms.shape[1] == 5: | |
result.pred_boxes = RotatedBoxes(bbox_nms) | |
else: | |
result.pred_boxes = Boxes(bbox_nms) | |
result.scores = score_nms | |
result.pred_classes = class_nms.to(torch.int64) | |
mask_fcn_probs = tensor_outputs.get("mask_fcn_probs", None) | |
if mask_fcn_probs is not None: | |
# finish the mask pred | |
mask_probs_pred = mask_fcn_probs | |
num_masks = mask_probs_pred.shape[0] | |
class_pred = result.pred_classes | |
indices = torch.arange(num_masks, device=class_pred.device) | |
mask_probs_pred = mask_probs_pred[indices, class_pred][:, None] | |
result.pred_masks = mask_probs_pred | |
elif force_mask_on: | |
# NOTE: there's no way to know the height/width of mask here, it won't be | |
# used anyway when batch size is 0, so just set them to 0. | |
result.pred_masks = torch.zeros([0, 1, 0, 0], dtype=torch.uint8) | |
keypoints_out = tensor_outputs.get("keypoints_out", None) | |
kps_score = tensor_outputs.get("kps_score", None) | |
if keypoints_out is not None: | |
# keypoints_out: [N, 4, #kypoints], where 4 is in order of (x, y, score, prob) | |
keypoints_tensor = keypoints_out | |
# NOTE: it's possible that prob is not calculated if "should_output_softmax" | |
# is set to False in HeatmapMaxKeypoint, so just using raw score, seems | |
# it doesn't affect mAP. TODO: check more carefully. | |
keypoint_xyp = keypoints_tensor.transpose(1, 2)[:, :, [0, 1, 2]] | |
result.pred_keypoints = keypoint_xyp | |
elif kps_score is not None: | |
# keypoint heatmap to sparse data structure | |
pred_keypoint_logits = kps_score | |
keypoint_head.keypoint_rcnn_inference(pred_keypoint_logits, [result]) | |
return results | |
def _cast_to_f32(f64): | |
return struct.unpack("f", struct.pack("f", f64))[0] | |
def set_caffe2_compatible_tensor_mode(model, enable=True): | |
def _fn(m): | |
if isinstance(m, Caffe2Compatible): | |
m.tensor_mode = enable | |
model.apply(_fn) | |
def convert_batched_inputs_to_c2_format(batched_inputs, size_divisibility, device): | |
""" | |
See get_caffe2_inputs() below. | |
""" | |
assert all(isinstance(x, dict) for x in batched_inputs) | |
assert all(x["image"].dim() == 3 for x in batched_inputs) | |
images = [x["image"] for x in batched_inputs] | |
images = ImageList.from_tensors(images, size_divisibility) | |
im_info = [] | |
for input_per_image, image_size in zip(batched_inputs, images.image_sizes): | |
target_height = input_per_image.get("height", image_size[0]) | |
target_width = input_per_image.get("width", image_size[1]) # noqa | |
# NOTE: The scale inside im_info is kept as convention and for providing | |
# post-processing information if further processing is needed. For | |
# current Caffe2 model definitions that don't include post-processing inside | |
# the model, this number is not used. | |
# NOTE: There can be a slight difference between width and height | |
# scales, using a single number can results in numerical difference | |
# compared with D2's post-processing. | |
scale = target_height / image_size[0] | |
im_info.append([image_size[0], image_size[1], scale]) | |
im_info = torch.Tensor(im_info) | |
return images.tensor.to(device), im_info.to(device) | |
class Caffe2MetaArch(Caffe2Compatible, torch.nn.Module): | |
""" | |
Base class for caffe2-compatible implementation of a meta architecture. | |
The forward is traceable and its traced graph can be converted to caffe2 | |
graph through ONNX. | |
""" | |
def __init__(self, cfg, torch_model, enable_tensor_mode=True): | |
""" | |
Args: | |
cfg (CfgNode): | |
torch_model (nn.Module): the detectron2 model (meta_arch) to be | |
converted. | |
""" | |
super().__init__() | |
self._wrapped_model = torch_model | |
self.eval() | |
set_caffe2_compatible_tensor_mode(self, enable_tensor_mode) | |
def get_caffe2_inputs(self, batched_inputs): | |
""" | |
Convert pytorch-style structured inputs to caffe2-style inputs that | |
are tuples of tensors. | |
Args: | |
batched_inputs (list[dict]): inputs to a detectron2 model | |
in its standard format. Each dict has "image" (CHW tensor), and optionally | |
"height" and "width". | |
Returns: | |
tuple[Tensor]: | |
tuple of tensors that will be the inputs to the | |
:meth:`forward` method. For existing models, the first | |
is an NCHW tensor (padded and batched); the second is | |
a im_info Nx3 tensor, where the rows are | |
(height, width, unused legacy parameter) | |
""" | |
return convert_batched_inputs_to_c2_format( | |
batched_inputs, | |
self._wrapped_model.backbone.size_divisibility, | |
self._wrapped_model.device, | |
) | |
def encode_additional_info(self, predict_net, init_net): | |
""" | |
Save extra metadata that will be used by inference in the output protobuf. | |
""" | |
pass | |
def forward(self, inputs): | |
""" | |
Run the forward in caffe2-style. It has to use caffe2-compatible ops | |
and the method will be used for tracing. | |
Args: | |
inputs (tuple[Tensor]): inputs defined by :meth:`get_caffe2_input`. | |
They will be the inputs of the converted caffe2 graph. | |
Returns: | |
tuple[Tensor]: output tensors. They will be the outputs of the | |
converted caffe2 graph. | |
""" | |
raise NotImplementedError | |
def _caffe2_preprocess_image(self, inputs): | |
""" | |
Caffe2 implementation of preprocess_image, which is called inside each MetaArch's forward. | |
It normalizes the input images, and the final caffe2 graph assumes the | |
inputs have been batched already. | |
""" | |
data, im_info = inputs | |
data = alias(data, "data") | |
im_info = alias(im_info, "im_info") | |
mean, std = self._wrapped_model.pixel_mean, self._wrapped_model.pixel_std | |
normalized_data = (data - mean) / std | |
normalized_data = alias(normalized_data, "normalized_data") | |
# Pack (data, im_info) into ImageList which is recognized by self.inference. | |
images = ImageList(tensor=normalized_data, image_sizes=im_info) | |
return images | |
def get_outputs_converter(predict_net, init_net): | |
""" | |
Creates a function that converts outputs of the caffe2 model to | |
detectron2's standard format. | |
The function uses information in `predict_net` and `init_net` that are | |
available at inferene time. Therefore the function logic can be used in inference. | |
The returned function has the following signature: | |
def convert(batched_inputs, c2_inputs, c2_results) -> detectron2_outputs | |
Where | |
* batched_inputs (list[dict]): the original input format of the meta arch | |
* c2_inputs (tuple[Tensor]): the caffe2 inputs. | |
* c2_results (dict[str, Tensor]): the caffe2 output format, | |
corresponding to the outputs of the :meth:`forward` function. | |
* detectron2_outputs: the original output format of the meta arch. | |
This function can be used to compare the outputs of the original meta arch and | |
the converted caffe2 graph. | |
Returns: | |
callable: a callable of the above signature. | |
""" | |
raise NotImplementedError | |
class Caffe2GeneralizedRCNN(Caffe2MetaArch): | |
def __init__(self, cfg, torch_model, enable_tensor_mode=True): | |
assert isinstance(torch_model, meta_arch.GeneralizedRCNN) | |
torch_model = patch_generalized_rcnn(torch_model) | |
super().__init__(cfg, torch_model, enable_tensor_mode) | |
try: | |
use_heatmap_max_keypoint = cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT | |
except AttributeError: | |
use_heatmap_max_keypoint = False | |
self.roi_heads_patcher = ROIHeadsPatcher( | |
self._wrapped_model.roi_heads, use_heatmap_max_keypoint | |
) | |
if self.tensor_mode: | |
self.roi_heads_patcher.patch_roi_heads() | |
def encode_additional_info(self, predict_net, init_net): | |
size_divisibility = self._wrapped_model.backbone.size_divisibility | |
check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility) | |
check_set_pb_arg( | |
predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii") | |
) | |
check_set_pb_arg(predict_net, "meta_architecture", "s", b"GeneralizedRCNN") | |
def forward(self, inputs): | |
if not self.tensor_mode: | |
return self._wrapped_model.inference(inputs) | |
images = self._caffe2_preprocess_image(inputs) | |
features = self._wrapped_model.backbone(images.tensor) | |
proposals, _ = self._wrapped_model.proposal_generator(images, features) | |
detector_results, _ = self._wrapped_model.roi_heads(images, features, proposals) | |
return tuple(detector_results[0].flatten()) | |
def get_outputs_converter(predict_net, init_net): | |
def f(batched_inputs, c2_inputs, c2_results): | |
_, im_info = c2_inputs | |
image_sizes = [[int(im[0]), int(im[1])] for im in im_info] | |
results = assemble_rcnn_outputs_by_name(image_sizes, c2_results) | |
return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes) | |
return f | |
class Caffe2RetinaNet(Caffe2MetaArch): | |
def __init__(self, cfg, torch_model): | |
assert isinstance(torch_model, meta_arch.RetinaNet) | |
super().__init__(cfg, torch_model) | |
def forward(self, inputs): | |
assert self.tensor_mode | |
images = self._caffe2_preprocess_image(inputs) | |
# explicitly return the images sizes to avoid removing "im_info" by ONNX | |
# since it's not used in the forward path | |
return_tensors = [images.image_sizes] | |
features = self._wrapped_model.backbone(images.tensor) | |
features = [features[f] for f in self._wrapped_model.head_in_features] | |
for i, feature_i in enumerate(features): | |
features[i] = alias(feature_i, "feature_{}".format(i), is_backward=True) | |
return_tensors.append(features[i]) | |
pred_logits, pred_anchor_deltas = self._wrapped_model.head(features) | |
for i, (box_cls_i, box_delta_i) in enumerate(zip(pred_logits, pred_anchor_deltas)): | |
return_tensors.append(alias(box_cls_i, "box_cls_{}".format(i))) | |
return_tensors.append(alias(box_delta_i, "box_delta_{}".format(i))) | |
return tuple(return_tensors) | |
def encode_additional_info(self, predict_net, init_net): | |
size_divisibility = self._wrapped_model.backbone.size_divisibility | |
check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility) | |
check_set_pb_arg( | |
predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii") | |
) | |
check_set_pb_arg(predict_net, "meta_architecture", "s", b"RetinaNet") | |
# Inference parameters: | |
check_set_pb_arg( | |
predict_net, "score_threshold", "f", _cast_to_f32(self._wrapped_model.test_score_thresh) | |
) | |
check_set_pb_arg( | |
predict_net, "topk_candidates", "i", self._wrapped_model.test_topk_candidates | |
) | |
check_set_pb_arg( | |
predict_net, "nms_threshold", "f", _cast_to_f32(self._wrapped_model.test_nms_thresh) | |
) | |
check_set_pb_arg( | |
predict_net, | |
"max_detections_per_image", | |
"i", | |
self._wrapped_model.max_detections_per_image, | |
) | |
check_set_pb_arg( | |
predict_net, | |
"bbox_reg_weights", | |
"floats", | |
[_cast_to_f32(w) for w in self._wrapped_model.box2box_transform.weights], | |
) | |
self._encode_anchor_generator_cfg(predict_net) | |
def _encode_anchor_generator_cfg(self, predict_net): | |
# serialize anchor_generator for future use | |
serialized_anchor_generator = io.BytesIO() | |
torch.save(self._wrapped_model.anchor_generator, serialized_anchor_generator) | |
# Ideally we can put anchor generating inside the model, then we don't | |
# need to store this information. | |
bytes = serialized_anchor_generator.getvalue() | |
check_set_pb_arg(predict_net, "serialized_anchor_generator", "s", bytes) | |
def get_outputs_converter(predict_net, init_net): | |
self = types.SimpleNamespace() | |
serialized_anchor_generator = io.BytesIO( | |
get_pb_arg_vals(predict_net, "serialized_anchor_generator", None) | |
) | |
self.anchor_generator = torch.load(serialized_anchor_generator) | |
bbox_reg_weights = get_pb_arg_floats(predict_net, "bbox_reg_weights", None) | |
self.box2box_transform = Box2BoxTransform(weights=tuple(bbox_reg_weights)) | |
self.test_score_thresh = get_pb_arg_valf(predict_net, "score_threshold", None) | |
self.test_topk_candidates = get_pb_arg_vali(predict_net, "topk_candidates", None) | |
self.test_nms_thresh = get_pb_arg_valf(predict_net, "nms_threshold", None) | |
self.max_detections_per_image = get_pb_arg_vali( | |
predict_net, "max_detections_per_image", None | |
) | |
# hack to reuse inference code from RetinaNet | |
for meth in [ | |
"forward_inference", | |
"inference_single_image", | |
"_transpose_dense_predictions", | |
"_decode_multi_level_predictions", | |
"_decode_per_level_predictions", | |
]: | |
setattr(self, meth, functools.partial(getattr(meta_arch.RetinaNet, meth), self)) | |
def f(batched_inputs, c2_inputs, c2_results): | |
_, im_info = c2_inputs | |
image_sizes = [[int(im[0]), int(im[1])] for im in im_info] | |
dummy_images = ImageList( | |
torch.randn( | |
( | |
len(im_info), | |
3, | |
) | |
+ tuple(image_sizes[0]) | |
), | |
image_sizes, | |
) | |
num_features = len([x for x in c2_results.keys() if x.startswith("box_cls_")]) | |
pred_logits = [c2_results["box_cls_{}".format(i)] for i in range(num_features)] | |
pred_anchor_deltas = [c2_results["box_delta_{}".format(i)] for i in range(num_features)] | |
# For each feature level, feature should have the same batch size and | |
# spatial dimension as the box_cls and box_delta. | |
dummy_features = [x.clone()[:, 0:0, :, :] for x in pred_logits] | |
# self.num_classess can be inferred | |
self.num_classes = pred_logits[0].shape[1] // (pred_anchor_deltas[0].shape[1] // 4) | |
results = self.forward_inference( | |
dummy_images, dummy_features, [pred_logits, pred_anchor_deltas] | |
) | |
return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes) | |
return f | |
META_ARCH_CAFFE2_EXPORT_TYPE_MAP = { | |
"GeneralizedRCNN": Caffe2GeneralizedRCNN, | |
"RetinaNet": Caffe2RetinaNet, | |
} | |