IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
23.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, cat
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.utils.registry import Registry
from ..anchor_generator import build_anchor_generator
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss
from ..matcher import Matcher
from ..sampling import subsample_labels
from .build import PROPOSAL_GENERATOR_REGISTRY
from .proposal_utils import find_top_rpn_proposals
RPN_HEAD_REGISTRY = Registry("RPN_HEAD")
RPN_HEAD_REGISTRY.__doc__ = """
Registry for RPN heads, which take feature maps and perform
objectness classification and bounding box regression for anchors.
The registered object will be called with `obj(cfg, input_shape)`.
The call should return a `nn.Module` object.
"""
"""
Shape shorthand in this module:
N: number of images in the minibatch
L: number of feature maps per image on which RPN is run
A: number of cell anchors (must be the same for all feature maps)
Hi, Wi: height and width of the i-th feature map
B: size of the box parameterization
Naming convention:
objectness: refers to the binary classification of an anchor as object vs. not object.
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransform`), or 5d for rotated boxes.
pred_objectness_logits: predicted objectness scores in [-inf, +inf]; use
sigmoid(pred_objectness_logits) to estimate P(object).
gt_labels: ground-truth binary classification labels for objectness
pred_anchor_deltas: predicted box2box transform deltas
gt_anchor_deltas: ground-truth box2box transform deltas
"""
def build_rpn_head(cfg, input_shape):
"""
Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`.
"""
name = cfg.MODEL.RPN.HEAD_NAME
return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape)
@RPN_HEAD_REGISTRY.register()
class StandardRPNHead(nn.Module):
"""
Standard RPN classification and regression heads described in :paper:`Faster R-CNN`.
Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts
objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas
specifying how to deform each anchor into an object proposal.
"""
@configurable
def __init__(
self, *, in_channels: int, num_anchors: int, box_dim: int = 4, conv_dims: List[int] = (-1,)
):
"""
NOTE: this interface is experimental.
Args:
in_channels (int): number of input feature channels. When using multiple
input features, they must have the same number of channels.
num_anchors (int): number of anchors to predict for *each spatial position*
on the feature map. The total number of anchors for each
feature map will be `num_anchors * H * W`.
box_dim (int): dimension of a box, which is also the number of box regression
predictions to make for each anchor. An axis aligned box has
box_dim=4, while a rotated box has box_dim=5.
conv_dims (list[int]): a list of integers representing the output channels
of N conv layers. Set it to -1 to use the same number of output channels
as input channels.
"""
super().__init__()
cur_channels = in_channels
# Keeping the old variable names and structure for backwards compatiblity.
# Otherwise the old checkpoints will fail to load.
if len(conv_dims) == 1:
out_channels = cur_channels if conv_dims[0] == -1 else conv_dims[0]
# 3x3 conv for the hidden representation
self.conv = self._get_rpn_conv(cur_channels, out_channels)
cur_channels = out_channels
else:
self.conv = nn.Sequential()
for k, conv_dim in enumerate(conv_dims):
out_channels = cur_channels if conv_dim == -1 else conv_dim
if out_channels <= 0:
raise ValueError(
f"Conv output channels should be greater than 0. Got {out_channels}"
)
conv = self._get_rpn_conv(cur_channels, out_channels)
self.conv.add_module(f"conv{k}", conv)
cur_channels = out_channels
# 1x1 conv for predicting objectness logits
self.objectness_logits = nn.Conv2d(cur_channels, num_anchors, kernel_size=1, stride=1)
# 1x1 conv for predicting box2box transform deltas
self.anchor_deltas = nn.Conv2d(cur_channels, num_anchors * box_dim, kernel_size=1, stride=1)
# Keeping the order of weights initialization same for backwards compatiblility.
for layer in self.modules():
if isinstance(layer, nn.Conv2d):
nn.init.normal_(layer.weight, std=0.01)
nn.init.constant_(layer.bias, 0)
def _get_rpn_conv(self, in_channels, out_channels):
return Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
activation=nn.ReLU(),
)
@classmethod
def from_config(cls, cfg, input_shape):
# Standard RPN is shared across levels:
in_channels = [s.channels for s in input_shape]
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
in_channels = in_channels[0]
# RPNHead should take the same input as anchor generator
# NOTE: it assumes that creating an anchor generator does not have unwanted side effect.
anchor_generator = build_anchor_generator(cfg, input_shape)
num_anchors = anchor_generator.num_anchors
box_dim = anchor_generator.box_dim
assert (
len(set(num_anchors)) == 1
), "Each level must have the same number of anchors per spatial position"
return {
"in_channels": in_channels,
"num_anchors": num_anchors[0],
"box_dim": box_dim,
"conv_dims": cfg.MODEL.RPN.CONV_DIMS,
}
def forward(self, features: List[torch.Tensor]):
"""
Args:
features (list[Tensor]): list of feature maps
Returns:
list[Tensor]: A list of L elements.
Element i is a tensor of shape (N, A, Hi, Wi) representing
the predicted objectness logits for all anchors. A is the number of cell anchors.
list[Tensor]: A list of L elements. Element i is a tensor of shape
(N, A*box_dim, Hi, Wi) representing the predicted "deltas" used to transform anchors
to proposals.
"""
pred_objectness_logits = []
pred_anchor_deltas = []
for x in features:
t = self.conv(x)
pred_objectness_logits.append(self.objectness_logits(t))
pred_anchor_deltas.append(self.anchor_deltas(t))
return pred_objectness_logits, pred_anchor_deltas
@PROPOSAL_GENERATOR_REGISTRY.register()
class RPN(nn.Module):
"""
Region Proposal Network, introduced by :paper:`Faster R-CNN`.
"""
@configurable
def __init__(
self,
*,
in_features: List[str],
head: nn.Module,
anchor_generator: nn.Module,
anchor_matcher: Matcher,
box2box_transform: Box2BoxTransform,
batch_size_per_image: int,
positive_fraction: float,
pre_nms_topk: Tuple[float, float],
post_nms_topk: Tuple[float, float],
nms_thresh: float = 0.7,
min_box_size: float = 0.0,
anchor_boundary_thresh: float = -1.0,
loss_weight: Union[float, Dict[str, float]] = 1.0,
box_reg_loss_type: str = "smooth_l1",
smooth_l1_beta: float = 0.0,
):
"""
NOTE: this interface is experimental.
Args:
in_features (list[str]): list of names of input features to use
head (nn.Module): a module that predicts logits and regression deltas
for each level from a list of per-level features
anchor_generator (nn.Module): a module that creates anchors from a
list of features. Usually an instance of :class:`AnchorGenerator`
anchor_matcher (Matcher): label the anchors by matching them with ground truth.
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to
instance boxes
batch_size_per_image (int): number of anchors per image to sample for training
positive_fraction (float): fraction of foreground anchors to sample for training
pre_nms_topk (tuple[float]): (train, test) that represents the
number of top k proposals to select before NMS, in
training and testing.
post_nms_topk (tuple[float]): (train, test) that represents the
number of top k proposals to select after NMS, in
training and testing.
nms_thresh (float): NMS threshold used to de-duplicate the predicted proposals
min_box_size (float): remove proposal boxes with any side smaller than this threshold,
in the unit of input image pixels
anchor_boundary_thresh (float): legacy option
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all rpn losses together, or a dict of individual weightings. Valid dict keys are:
"loss_rpn_cls" - applied to classification loss
"loss_rpn_loc" - applied to box regression loss
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou".
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
"""
super().__init__()
self.in_features = in_features
self.rpn_head = head
self.anchor_generator = anchor_generator
self.anchor_matcher = anchor_matcher
self.box2box_transform = box2box_transform
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
# Map from self.training state to train/test settings
self.pre_nms_topk = {True: pre_nms_topk[0], False: pre_nms_topk[1]}
self.post_nms_topk = {True: post_nms_topk[0], False: post_nms_topk[1]}
self.nms_thresh = nms_thresh
self.min_box_size = float(min_box_size)
self.anchor_boundary_thresh = anchor_boundary_thresh
if isinstance(loss_weight, float):
loss_weight = {"loss_rpn_cls": loss_weight, "loss_rpn_loc": loss_weight}
self.loss_weight = loss_weight
self.box_reg_loss_type = box_reg_loss_type
self.smooth_l1_beta = smooth_l1_beta
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
in_features = cfg.MODEL.RPN.IN_FEATURES
ret = {
"in_features": in_features,
"min_box_size": cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE,
"nms_thresh": cfg.MODEL.RPN.NMS_THRESH,
"batch_size_per_image": cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE,
"positive_fraction": cfg.MODEL.RPN.POSITIVE_FRACTION,
"loss_weight": {
"loss_rpn_cls": cfg.MODEL.RPN.LOSS_WEIGHT,
"loss_rpn_loc": cfg.MODEL.RPN.BBOX_REG_LOSS_WEIGHT * cfg.MODEL.RPN.LOSS_WEIGHT,
},
"anchor_boundary_thresh": cfg.MODEL.RPN.BOUNDARY_THRESH,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS),
"box_reg_loss_type": cfg.MODEL.RPN.BBOX_REG_LOSS_TYPE,
"smooth_l1_beta": cfg.MODEL.RPN.SMOOTH_L1_BETA,
}
ret["pre_nms_topk"] = (cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN, cfg.MODEL.RPN.PRE_NMS_TOPK_TEST)
ret["post_nms_topk"] = (cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN, cfg.MODEL.RPN.POST_NMS_TOPK_TEST)
ret["anchor_generator"] = build_anchor_generator(cfg, [input_shape[f] for f in in_features])
ret["anchor_matcher"] = Matcher(
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True
)
ret["head"] = build_rpn_head(cfg, [input_shape[f] for f in in_features])
return ret
def _subsample_labels(self, label):
"""
Randomly sample a subset of positive and negative examples, and overwrite
the label vector to the ignore value (-1) for all elements that are not
included in the sample.
Args:
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned.
"""
pos_idx, neg_idx = subsample_labels(
label, self.batch_size_per_image, self.positive_fraction, 0
)
# Fill with the ignore label (-1), then set positive and negative labels
label.fill_(-1)
label.scatter_(0, pos_idx, 1)
label.scatter_(0, neg_idx, 0)
return label
@torch.jit.unused
@torch.no_grad()
def label_and_sample_anchors(
self, anchors: List[Boxes], gt_instances: List[Instances]
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
Args:
anchors (list[Boxes]): anchors for each feature map.
gt_instances: the ground-truth instances for each image.
Returns:
list[Tensor]:
List of #img tensors. i-th element is a vector of labels whose length is
the total number of anchors across all feature maps R = sum(Hi * Wi * A).
Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative
class; 1 = positive class.
list[Tensor]:
i-th element is a Rx4 tensor. The values are the matched gt boxes for each
anchor. Values are undefined for those anchors not labeled as 1.
"""
anchors = Boxes.cat(anchors)
gt_boxes = [x.gt_boxes for x in gt_instances]
image_sizes = [x.image_size for x in gt_instances]
del gt_instances
gt_labels = []
matched_gt_boxes = []
for image_size_i, gt_boxes_i in zip(image_sizes, gt_boxes):
"""
image_size_i: (h, w) for the i-th image
gt_boxes_i: ground-truth boxes for i-th image
"""
match_quality_matrix = retry_if_cuda_oom(pairwise_iou)(gt_boxes_i, anchors)
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix)
# Matching is memory-expensive and may result in CPU tensors. But the result is small
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device)
del match_quality_matrix
if self.anchor_boundary_thresh >= 0:
# Discard anchors that go out of the boundaries of the image
# NOTE: This is legacy functionality that is turned off by default in Detectron2
anchors_inside_image = anchors.inside_box(image_size_i, self.anchor_boundary_thresh)
gt_labels_i[~anchors_inside_image] = -1
# A vector of labels (-1, 0, 1) for each anchor
gt_labels_i = self._subsample_labels(gt_labels_i)
if len(gt_boxes_i) == 0:
# These values won't be used anyway since the anchor is labeled as background
matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
else:
# TODO wasted indexing computation for ignored boxes
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor
gt_labels.append(gt_labels_i) # N,AHW
matched_gt_boxes.append(matched_gt_boxes_i)
return gt_labels, matched_gt_boxes
@torch.jit.unused
def losses(
self,
anchors: List[Boxes],
pred_objectness_logits: List[torch.Tensor],
gt_labels: List[torch.Tensor],
pred_anchor_deltas: List[torch.Tensor],
gt_boxes: List[torch.Tensor],
) -> Dict[str, torch.Tensor]:
"""
Return the losses from a set of RPN predictions and their associated ground-truth.
Args:
anchors (list[Boxes or RotatedBoxes]): anchors for each feature map, each
has shape (Hi*Wi*A, B), where B is box dimension (4 or 5).
pred_objectness_logits (list[Tensor]): A list of L elements.
Element i is a tensor of shape (N, Hi*Wi*A) representing
the predicted objectness logits for all anchors.
gt_labels (list[Tensor]): Output of :meth:`label_and_sample_anchors`.
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape
(N, Hi*Wi*A, 4 or 5) representing the predicted "deltas" used to transform anchors
to proposals.
gt_boxes (list[Tensor]): Output of :meth:`label_and_sample_anchors`.
Returns:
dict[loss name -> loss value]: A dict mapping from loss name to loss value.
Loss names are: `loss_rpn_cls` for objectness classification and
`loss_rpn_loc` for proposal localization.
"""
num_images = len(gt_labels)
gt_labels = torch.stack(gt_labels) # (N, sum(Hi*Wi*Ai))
# Log the number of positive/negative anchors per-image that's used in training
pos_mask = gt_labels == 1
num_pos_anchors = pos_mask.sum().item()
num_neg_anchors = (gt_labels == 0).sum().item()
storage = get_event_storage()
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images)
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images)
localization_loss = _dense_box_regression_loss(
anchors,
self.box2box_transform,
pred_anchor_deltas,
gt_boxes,
pos_mask,
box_reg_loss_type=self.box_reg_loss_type,
smooth_l1_beta=self.smooth_l1_beta,
)
valid_mask = gt_labels >= 0
objectness_loss = F.binary_cross_entropy_with_logits(
cat(pred_objectness_logits, dim=1)[valid_mask],
gt_labels[valid_mask].to(torch.float32),
reduction="sum",
)
normalizer = self.batch_size_per_image * num_images
losses = {
"loss_rpn_cls": objectness_loss / normalizer,
# The original Faster R-CNN paper uses a slightly different normalizer
# for loc loss. But it doesn't matter in practice
"loss_rpn_loc": localization_loss / normalizer,
}
losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
return losses
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
gt_instances: Optional[List[Instances]] = None,
):
"""
Args:
images (ImageList): input images of length `N`
features (dict[str, Tensor]): input data as a mapping from feature
map name to tensor. Axis 0 represents the number of images `N` in
the input data; axes 1-3 are channels, height, and width, which may
vary between feature maps (e.g., if a feature pyramid is used).
gt_instances (list[Instances], optional): a length `N` list of `Instances`s.
Each `Instances` stores ground-truth instances for the corresponding image.
Returns:
proposals: list[Instances]: contains fields "proposal_boxes", "objectness_logits"
loss: dict[Tensor] or None
"""
features = [features[f] for f in self.in_features]
anchors = self.anchor_generator(features)
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
# Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [
# (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits
]
pred_anchor_deltas = [
# (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B)
x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1])
.permute(0, 3, 4, 1, 2)
.flatten(1, -2)
for x in pred_anchor_deltas
]
if self.training:
assert gt_instances is not None, "RPN requires gt_instances in training!"
gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances)
losses = self.losses(
anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes
)
else:
losses = {}
proposals = self.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes
)
return proposals, losses
def predict_proposals(
self,
anchors: List[Boxes],
pred_objectness_logits: List[torch.Tensor],
pred_anchor_deltas: List[torch.Tensor],
image_sizes: List[Tuple[int, int]],
):
"""
Decode all the predicted box regression deltas to proposals. Find the top proposals
by applying NMS and removing boxes that are too small.
Returns:
proposals (list[Instances]): list of N Instances. The i-th Instances
stores post_nms_topk object proposals for image i, sorted by their
objectness score in descending order.
"""
# The proposals are treated as fixed for joint training with roi heads.
# This approach ignores the derivative w.r.t. the proposal boxesโ€™ coordinates that
# are also network responses.
with torch.no_grad():
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas)
return find_top_rpn_proposals(
pred_proposals,
pred_objectness_logits,
image_sizes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_size,
self.training,
)
def _decode_proposals(self, anchors: List[Boxes], pred_anchor_deltas: List[torch.Tensor]):
"""
Transform anchors into proposals by applying the predicted anchor deltas.
Returns:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape
(N, Hi*Wi*A, B)
"""
N = pred_anchor_deltas[0].shape[0]
proposals = []
# For each feature map
for anchors_i, pred_anchor_deltas_i in zip(anchors, pred_anchor_deltas):
B = anchors_i.tensor.size(1)
pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B)
# Expand anchors to shape (N*Hi*Wi*A, B)
anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B)
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
return proposals