Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright 2004-present Facebook. All Rights Reserved. | |
import copy | |
import numpy as np | |
from typing import List | |
import torch | |
from detectron2.config import configurable | |
from detectron2.structures import Boxes, Instances | |
from detectron2.structures.boxes import pairwise_iou | |
from ..config.config import CfgNode as CfgNode_ | |
from .base_tracker import TRACKER_HEADS_REGISTRY, BaseTracker | |
class BBoxIOUTracker(BaseTracker): | |
""" | |
A bounding box tracker to assign ID based on IoU between current and previous instances | |
""" | |
def __init__( | |
self, | |
*, | |
video_height: int, | |
video_width: int, | |
max_num_instances: int = 200, | |
max_lost_frame_count: int = 0, | |
min_box_rel_dim: float = 0.02, | |
min_instance_period: int = 1, | |
track_iou_threshold: float = 0.5, | |
**kwargs, | |
): | |
""" | |
Args: | |
video_height: height the video frame | |
video_width: width of the video frame | |
max_num_instances: maximum number of id allowed to be tracked | |
max_lost_frame_count: maximum number of frame an id can lost tracking | |
exceed this number, an id is considered as lost | |
forever | |
min_box_rel_dim: a percentage, smaller than this dimension, a bbox is | |
removed from tracking | |
min_instance_period: an instance will be shown after this number of period | |
since its first showing up in the video | |
track_iou_threshold: iou threshold, below this number a bbox pair is removed | |
from tracking | |
""" | |
super().__init__(**kwargs) | |
self._video_height = video_height | |
self._video_width = video_width | |
self._max_num_instances = max_num_instances | |
self._max_lost_frame_count = max_lost_frame_count | |
self._min_box_rel_dim = min_box_rel_dim | |
self._min_instance_period = min_instance_period | |
self._track_iou_threshold = track_iou_threshold | |
def from_config(cls, cfg: CfgNode_): | |
""" | |
Old style initialization using CfgNode | |
Args: | |
cfg: D2 CfgNode, config file | |
Return: | |
dictionary storing arguments for __init__ method | |
""" | |
assert "VIDEO_HEIGHT" in cfg.TRACKER_HEADS | |
assert "VIDEO_WIDTH" in cfg.TRACKER_HEADS | |
video_height = cfg.TRACKER_HEADS.get("VIDEO_HEIGHT") | |
video_width = cfg.TRACKER_HEADS.get("VIDEO_WIDTH") | |
max_num_instances = cfg.TRACKER_HEADS.get("MAX_NUM_INSTANCES", 200) | |
max_lost_frame_count = cfg.TRACKER_HEADS.get("MAX_LOST_FRAME_COUNT", 0) | |
min_box_rel_dim = cfg.TRACKER_HEADS.get("MIN_BOX_REL_DIM", 0.02) | |
min_instance_period = cfg.TRACKER_HEADS.get("MIN_INSTANCE_PERIOD", 1) | |
track_iou_threshold = cfg.TRACKER_HEADS.get("TRACK_IOU_THRESHOLD", 0.5) | |
return { | |
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker", | |
"video_height": video_height, | |
"video_width": video_width, | |
"max_num_instances": max_num_instances, | |
"max_lost_frame_count": max_lost_frame_count, | |
"min_box_rel_dim": min_box_rel_dim, | |
"min_instance_period": min_instance_period, | |
"track_iou_threshold": track_iou_threshold, | |
} | |
def update(self, instances: Instances) -> Instances: | |
""" | |
See BaseTracker description | |
""" | |
instances = self._initialize_extra_fields(instances) | |
if self._prev_instances is not None: | |
# calculate IoU of all bbox pairs | |
iou_all = pairwise_iou( | |
boxes1=instances.pred_boxes, | |
boxes2=self._prev_instances.pred_boxes, | |
) | |
# sort IoU in descending order | |
bbox_pairs = self._create_prediction_pairs(instances, iou_all) | |
# assign previous ID to current bbox if IoU > track_iou_threshold | |
self._reset_fields() | |
for bbox_pair in bbox_pairs: | |
idx = bbox_pair["idx"] | |
prev_id = bbox_pair["prev_id"] | |
if ( | |
idx in self._matched_idx | |
or prev_id in self._matched_ID | |
or bbox_pair["IoU"] < self._track_iou_threshold | |
): | |
continue | |
instances.ID[idx] = prev_id | |
instances.ID_period[idx] = bbox_pair["prev_period"] + 1 | |
instances.lost_frame_count[idx] = 0 | |
self._matched_idx.add(idx) | |
self._matched_ID.add(prev_id) | |
self._untracked_prev_idx.remove(bbox_pair["prev_idx"]) | |
instances = self._assign_new_id(instances) | |
instances = self._merge_untracked_instances(instances) | |
self._prev_instances = copy.deepcopy(instances) | |
return instances | |
def _create_prediction_pairs(self, instances: Instances, iou_all: np.ndarray) -> List: | |
""" | |
For all instances in previous and current frames, create pairs. For each | |
pair, store index of the instance in current frame predcitions, index in | |
previous predictions, ID in previous predictions, IoU of the bboxes in this | |
pair, period in previous predictions. | |
Args: | |
instances: D2 Instances, for predictions of the current frame | |
iou_all: IoU for all bboxes pairs | |
Return: | |
A list of IoU for all pairs | |
""" | |
bbox_pairs = [] | |
for i in range(len(instances)): | |
for j in range(len(self._prev_instances)): | |
bbox_pairs.append( | |
{ | |
"idx": i, | |
"prev_idx": j, | |
"prev_id": self._prev_instances.ID[j], | |
"IoU": iou_all[i, j], | |
"prev_period": self._prev_instances.ID_period[j], | |
} | |
) | |
return bbox_pairs | |
def _initialize_extra_fields(self, instances: Instances) -> Instances: | |
""" | |
If input instances don't have ID, ID_period, lost_frame_count fields, | |
this method is used to initialize these fields. | |
Args: | |
instances: D2 Instances, for predictions of the current frame | |
Return: | |
D2 Instances with extra fields added | |
""" | |
if not instances.has("ID"): | |
instances.set("ID", [None] * len(instances)) | |
if not instances.has("ID_period"): | |
instances.set("ID_period", [None] * len(instances)) | |
if not instances.has("lost_frame_count"): | |
instances.set("lost_frame_count", [None] * len(instances)) | |
if self._prev_instances is None: | |
instances.ID = list(range(len(instances))) | |
self._id_count += len(instances) | |
instances.ID_period = [1] * len(instances) | |
instances.lost_frame_count = [0] * len(instances) | |
return instances | |
def _reset_fields(self): | |
""" | |
Before each uodate call, reset fields first | |
""" | |
self._matched_idx = set() | |
self._matched_ID = set() | |
self._untracked_prev_idx = set(range(len(self._prev_instances))) | |
def _assign_new_id(self, instances: Instances) -> Instances: | |
""" | |
For each untracked instance, assign a new id | |
Args: | |
instances: D2 Instances, for predictions of the current frame | |
Return: | |
D2 Instances with new ID assigned | |
""" | |
untracked_idx = set(range(len(instances))).difference(self._matched_idx) | |
for idx in untracked_idx: | |
instances.ID[idx] = self._id_count | |
self._id_count += 1 | |
instances.ID_period[idx] = 1 | |
instances.lost_frame_count[idx] = 0 | |
return instances | |
def _merge_untracked_instances(self, instances: Instances) -> Instances: | |
""" | |
For untracked previous instances, under certain condition, still keep them | |
in tracking and merge with the current instances. | |
Args: | |
instances: D2 Instances, for predictions of the current frame | |
Return: | |
D2 Instances merging current instances and instances from previous | |
frame decided to keep tracking | |
""" | |
untracked_instances = Instances( | |
image_size=instances.image_size, | |
pred_boxes=[], | |
pred_classes=[], | |
scores=[], | |
ID=[], | |
ID_period=[], | |
lost_frame_count=[], | |
) | |
prev_bboxes = list(self._prev_instances.pred_boxes) | |
prev_classes = list(self._prev_instances.pred_classes) | |
prev_scores = list(self._prev_instances.scores) | |
prev_ID_period = self._prev_instances.ID_period | |
if instances.has("pred_masks"): | |
untracked_instances.set("pred_masks", []) | |
prev_masks = list(self._prev_instances.pred_masks) | |
if instances.has("pred_keypoints"): | |
untracked_instances.set("pred_keypoints", []) | |
prev_keypoints = list(self._prev_instances.pred_keypoints) | |
if instances.has("pred_keypoint_heatmaps"): | |
untracked_instances.set("pred_keypoint_heatmaps", []) | |
prev_keypoint_heatmaps = list(self._prev_instances.pred_keypoint_heatmaps) | |
for idx in self._untracked_prev_idx: | |
x_left, y_top, x_right, y_bot = prev_bboxes[idx] | |
if ( | |
(1.0 * (x_right - x_left) / self._video_width < self._min_box_rel_dim) | |
or (1.0 * (y_bot - y_top) / self._video_height < self._min_box_rel_dim) | |
or self._prev_instances.lost_frame_count[idx] >= self._max_lost_frame_count | |
or prev_ID_period[idx] <= self._min_instance_period | |
): | |
continue | |
untracked_instances.pred_boxes.append(list(prev_bboxes[idx].numpy())) | |
untracked_instances.pred_classes.append(int(prev_classes[idx])) | |
untracked_instances.scores.append(float(prev_scores[idx])) | |
untracked_instances.ID.append(self._prev_instances.ID[idx]) | |
untracked_instances.ID_period.append(self._prev_instances.ID_period[idx]) | |
untracked_instances.lost_frame_count.append( | |
self._prev_instances.lost_frame_count[idx] + 1 | |
) | |
if instances.has("pred_masks"): | |
untracked_instances.pred_masks.append(prev_masks[idx].numpy().astype(np.uint8)) | |
if instances.has("pred_keypoints"): | |
untracked_instances.pred_keypoints.append( | |
prev_keypoints[idx].numpy().astype(np.uint8) | |
) | |
if instances.has("pred_keypoint_heatmaps"): | |
untracked_instances.pred_keypoint_heatmaps.append( | |
prev_keypoint_heatmaps[idx].numpy().astype(np.float32) | |
) | |
untracked_instances.pred_boxes = Boxes(torch.FloatTensor(untracked_instances.pred_boxes)) | |
untracked_instances.pred_classes = torch.IntTensor(untracked_instances.pred_classes) | |
untracked_instances.scores = torch.FloatTensor(untracked_instances.scores) | |
if instances.has("pred_masks"): | |
untracked_instances.pred_masks = torch.IntTensor(untracked_instances.pred_masks) | |
if instances.has("pred_keypoints"): | |
untracked_instances.pred_keypoints = torch.IntTensor(untracked_instances.pred_keypoints) | |
if instances.has("pred_keypoint_heatmaps"): | |
untracked_instances.pred_keypoint_heatmaps = torch.FloatTensor( | |
untracked_instances.pred_keypoint_heatmaps | |
) | |
return Instances.cat( | |
[ | |
instances, | |
untracked_instances, | |
] | |
) | |