Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import contextlib | |
import copy | |
import io | |
import itertools | |
import logging | |
import numpy as np | |
import os | |
from collections import OrderedDict | |
from typing import Dict, Iterable, List, Optional | |
import pycocotools.mask as mask_utils | |
import torch | |
from pycocotools.coco import COCO | |
from tabulate import tabulate | |
from detectron2.config import CfgNode | |
from detectron2.data import MetadataCatalog | |
from detectron2.evaluation import DatasetEvaluator | |
from detectron2.structures import BoxMode | |
from detectron2.utils.comm import gather, get_rank, is_main_process, synchronize | |
from detectron2.utils.file_io import PathManager | |
from detectron2.utils.logger import create_small_table | |
from densepose.converters import ToChartResultConverter, ToMaskConverter | |
from densepose.data.datasets.coco import maybe_filter_and_map_categories_cocoapi | |
from densepose.structures import ( | |
DensePoseChartPredictorOutput, | |
DensePoseEmbeddingPredictorOutput, | |
quantize_densepose_chart_result, | |
) | |
from .densepose_coco_evaluation import DensePoseCocoEval, DensePoseEvalMode | |
from .mesh_alignment_evaluator import MeshAlignmentEvaluator | |
from .tensor_storage import ( | |
SingleProcessFileTensorStorage, | |
SingleProcessRamTensorStorage, | |
SingleProcessTensorStorage, | |
SizeData, | |
storage_gather, | |
) | |
class DensePoseCOCOEvaluator(DatasetEvaluator): | |
def __init__( | |
self, | |
dataset_name, | |
distributed, | |
output_dir=None, | |
evaluator_type: str = "iuv", | |
min_iou_threshold: float = 0.5, | |
storage: Optional[SingleProcessTensorStorage] = None, | |
embedder=None, | |
should_evaluate_mesh_alignment: bool = False, | |
mesh_alignment_mesh_names: Optional[List[str]] = None, | |
): | |
self._embedder = embedder | |
self._distributed = distributed | |
self._output_dir = output_dir | |
self._evaluator_type = evaluator_type | |
self._storage = storage | |
self._should_evaluate_mesh_alignment = should_evaluate_mesh_alignment | |
assert not ( | |
should_evaluate_mesh_alignment and embedder is None | |
), "Mesh alignment evaluation is activated, but no vertex embedder provided!" | |
if should_evaluate_mesh_alignment: | |
self._mesh_alignment_evaluator = MeshAlignmentEvaluator( | |
embedder, | |
mesh_alignment_mesh_names, | |
) | |
self._cpu_device = torch.device("cpu") | |
self._logger = logging.getLogger(__name__) | |
self._metadata = MetadataCatalog.get(dataset_name) | |
self._min_threshold = min_iou_threshold | |
json_file = PathManager.get_local_path(self._metadata.json_file) | |
with contextlib.redirect_stdout(io.StringIO()): | |
self._coco_api = COCO(json_file) | |
maybe_filter_and_map_categories_cocoapi(dataset_name, self._coco_api) | |
def reset(self): | |
self._predictions = [] | |
def process(self, inputs, outputs): | |
""" | |
Args: | |
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). | |
It is a list of dict. Each dict corresponds to an image and | |
contains keys like "height", "width", "file_name", "image_id". | |
outputs: the outputs of a COCO model. It is a list of dicts with key | |
"instances" that contains :class:`Instances`. | |
The :class:`Instances` object needs to have `densepose` field. | |
""" | |
for input, output in zip(inputs, outputs): | |
instances = output["instances"].to(self._cpu_device) | |
if not instances.has("pred_densepose"): | |
continue | |
prediction_list = prediction_to_dict( | |
instances, | |
input["image_id"], | |
self._embedder, | |
self._metadata.class_to_mesh_name, | |
self._storage is not None, | |
) | |
if self._storage is not None: | |
for prediction_dict in prediction_list: | |
dict_to_store = {} | |
for field_name in self._storage.data_schema: | |
dict_to_store[field_name] = prediction_dict[field_name] | |
record_id = self._storage.put(dict_to_store) | |
prediction_dict["record_id"] = record_id | |
prediction_dict["rank"] = get_rank() | |
for field_name in self._storage.data_schema: | |
del prediction_dict[field_name] | |
self._predictions.extend(prediction_list) | |
def evaluate(self, img_ids=None): | |
if self._distributed: | |
synchronize() | |
predictions = gather(self._predictions) | |
predictions = list(itertools.chain(*predictions)) | |
else: | |
predictions = self._predictions | |
multi_storage = storage_gather(self._storage) if self._storage is not None else None | |
if not is_main_process(): | |
return | |
return copy.deepcopy(self._eval_predictions(predictions, multi_storage, img_ids)) | |
def _eval_predictions(self, predictions, multi_storage=None, img_ids=None): | |
""" | |
Evaluate predictions on densepose. | |
Return results with the metrics of the tasks. | |
""" | |
self._logger.info("Preparing results for COCO format ...") | |
if self._output_dir: | |
PathManager.mkdirs(self._output_dir) | |
file_path = os.path.join(self._output_dir, "coco_densepose_predictions.pth") | |
with PathManager.open(file_path, "wb") as f: | |
torch.save(predictions, f) | |
self._logger.info("Evaluating predictions ...") | |
res = OrderedDict() | |
results_gps, results_gpsm, results_segm = _evaluate_predictions_on_coco( | |
self._coco_api, | |
predictions, | |
multi_storage, | |
self._embedder, | |
class_names=self._metadata.get("thing_classes"), | |
min_threshold=self._min_threshold, | |
img_ids=img_ids, | |
) | |
res["densepose_gps"] = results_gps | |
res["densepose_gpsm"] = results_gpsm | |
res["densepose_segm"] = results_segm | |
if self._should_evaluate_mesh_alignment: | |
res["densepose_mesh_alignment"] = self._evaluate_mesh_alignment() | |
return res | |
def _evaluate_mesh_alignment(self): | |
self._logger.info("Mesh alignment evaluation ...") | |
mean_ge, mean_gps, per_mesh_metrics = self._mesh_alignment_evaluator.evaluate() | |
results = { | |
"GE": mean_ge * 100, | |
"GPS": mean_gps * 100, | |
} | |
mesh_names = set() | |
for metric_name in per_mesh_metrics: | |
for mesh_name, value in per_mesh_metrics[metric_name].items(): | |
results[f"{metric_name}-{mesh_name}"] = value * 100 | |
mesh_names.add(mesh_name) | |
self._print_mesh_alignment_results(results, mesh_names) | |
return results | |
def _print_mesh_alignment_results(self, results: Dict[str, float], mesh_names: Iterable[str]): | |
self._logger.info("Evaluation results for densepose, mesh alignment:") | |
self._logger.info(f'| {"Mesh":13s} | {"GErr":7s} | {"GPS":7s} |') | |
self._logger.info("| :-----------: | :-----: | :-----: |") | |
for mesh_name in mesh_names: | |
ge_key = f"GE-{mesh_name}" | |
ge_str = f"{results[ge_key]:.4f}" if ge_key in results else " " | |
gps_key = f"GPS-{mesh_name}" | |
gps_str = f"{results[gps_key]:.4f}" if gps_key in results else " " | |
self._logger.info(f"| {mesh_name:13s} | {ge_str:7s} | {gps_str:7s} |") | |
self._logger.info("| :-------------------------------: |") | |
ge_key = "GE" | |
ge_str = f"{results[ge_key]:.4f}" if ge_key in results else " " | |
gps_key = "GPS" | |
gps_str = f"{results[gps_key]:.4f}" if gps_key in results else " " | |
self._logger.info(f'| {"MEAN":13s} | {ge_str:7s} | {gps_str:7s} |') | |
def prediction_to_dict(instances, img_id, embedder, class_to_mesh_name, use_storage): | |
""" | |
Args: | |
instances (Instances): the output of the model | |
img_id (str): the image id in COCO | |
Returns: | |
list[dict]: the results in densepose evaluation format | |
""" | |
scores = instances.scores.tolist() | |
classes = instances.pred_classes.tolist() | |
raw_boxes_xywh = BoxMode.convert( | |
instances.pred_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS | |
) | |
if isinstance(instances.pred_densepose, DensePoseEmbeddingPredictorOutput): | |
results_densepose = densepose_cse_predictions_to_dict( | |
instances, embedder, class_to_mesh_name, use_storage | |
) | |
elif isinstance(instances.pred_densepose, DensePoseChartPredictorOutput): | |
if not use_storage: | |
results_densepose = densepose_chart_predictions_to_dict(instances) | |
else: | |
results_densepose = densepose_chart_predictions_to_storage_dict(instances) | |
results = [] | |
for k in range(len(instances)): | |
result = { | |
"image_id": img_id, | |
"category_id": classes[k], | |
"bbox": raw_boxes_xywh[k].tolist(), | |
"score": scores[k], | |
} | |
results.append({**result, **results_densepose[k]}) | |
return results | |
def densepose_chart_predictions_to_dict(instances): | |
segmentations = ToMaskConverter.convert( | |
instances.pred_densepose, instances.pred_boxes, instances.image_size | |
) | |
results = [] | |
for k in range(len(instances)): | |
densepose_results_quantized = quantize_densepose_chart_result( | |
ToChartResultConverter.convert(instances.pred_densepose[k], instances.pred_boxes[k]) | |
) | |
densepose_results_quantized.labels_uv_uint8 = ( | |
densepose_results_quantized.labels_uv_uint8.cpu() | |
) | |
segmentation = segmentations.tensor[k] | |
segmentation_encoded = mask_utils.encode( | |
np.require(segmentation.numpy(), dtype=np.uint8, requirements=["F"]) | |
) | |
segmentation_encoded["counts"] = segmentation_encoded["counts"].decode("utf-8") | |
result = { | |
"densepose": densepose_results_quantized, | |
"segmentation": segmentation_encoded, | |
} | |
results.append(result) | |
return results | |
def densepose_chart_predictions_to_storage_dict(instances): | |
results = [] | |
for k in range(len(instances)): | |
densepose_predictor_output = instances.pred_densepose[k] | |
result = { | |
"coarse_segm": densepose_predictor_output.coarse_segm.squeeze(0).cpu(), | |
"fine_segm": densepose_predictor_output.fine_segm.squeeze(0).cpu(), | |
"u": densepose_predictor_output.u.squeeze(0).cpu(), | |
"v": densepose_predictor_output.v.squeeze(0).cpu(), | |
} | |
results.append(result) | |
return results | |
def densepose_cse_predictions_to_dict(instances, embedder, class_to_mesh_name, use_storage): | |
results = [] | |
for k in range(len(instances)): | |
cse = instances.pred_densepose[k] | |
results.append( | |
{ | |
"coarse_segm": cse.coarse_segm[0].cpu(), | |
"embedding": cse.embedding[0].cpu(), | |
} | |
) | |
return results | |
def _evaluate_predictions_on_coco( | |
coco_gt, | |
coco_results, | |
multi_storage=None, | |
embedder=None, | |
class_names=None, | |
min_threshold: float = 0.5, | |
img_ids=None, | |
): | |
logger = logging.getLogger(__name__) | |
densepose_metrics = _get_densepose_metrics(min_threshold) | |
if len(coco_results) == 0: # cocoapi does not handle empty results very well | |
logger.warn("No predictions from the model! Set scores to -1") | |
results_gps = {metric: -1 for metric in densepose_metrics} | |
results_gpsm = {metric: -1 for metric in densepose_metrics} | |
results_segm = {metric: -1 for metric in densepose_metrics} | |
return results_gps, results_gpsm, results_segm | |
coco_dt = coco_gt.loadRes(coco_results) | |
results = [] | |
for eval_mode_name in ["GPS", "GPSM", "IOU"]: | |
eval_mode = getattr(DensePoseEvalMode, eval_mode_name) | |
coco_eval = DensePoseCocoEval( | |
coco_gt, coco_dt, "densepose", multi_storage, embedder, dpEvalMode=eval_mode | |
) | |
result = _derive_results_from_coco_eval( | |
coco_eval, eval_mode_name, densepose_metrics, class_names, min_threshold, img_ids | |
) | |
results.append(result) | |
return results | |
def _get_densepose_metrics(min_threshold: float = 0.5): | |
metrics = ["AP"] | |
if min_threshold <= 0.201: | |
metrics += ["AP20"] | |
if min_threshold <= 0.301: | |
metrics += ["AP30"] | |
if min_threshold <= 0.401: | |
metrics += ["AP40"] | |
metrics.extend(["AP50", "AP75", "APm", "APl", "AR", "AR50", "AR75", "ARm", "ARl"]) | |
return metrics | |
def _derive_results_from_coco_eval( | |
coco_eval, eval_mode_name, metrics, class_names, min_threshold: float, img_ids | |
): | |
if img_ids is not None: | |
coco_eval.params.imgIds = img_ids | |
coco_eval.params.iouThrs = np.linspace( | |
min_threshold, 0.95, int(np.round((0.95 - min_threshold) / 0.05)) + 1, endpoint=True | |
) | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
coco_eval.summarize() | |
results = {metric: float(coco_eval.stats[idx] * 100) for idx, metric in enumerate(metrics)} | |
logger = logging.getLogger(__name__) | |
logger.info( | |
f"Evaluation results for densepose, {eval_mode_name} metric: \n" | |
+ create_small_table(results) | |
) | |
if class_names is None or len(class_names) <= 1: | |
return results | |
# Compute per-category AP, the same way as it is done in D2 | |
# (see detectron2/evaluation/coco_evaluation.py): | |
precisions = coco_eval.eval["precision"] | |
# precision has dims (iou, recall, cls, area range, max dets) | |
assert len(class_names) == precisions.shape[2] | |
results_per_category = [] | |
for idx, name in enumerate(class_names): | |
# area range index 0: all area ranges | |
# max dets index -1: typically 100 per image | |
precision = precisions[:, :, idx, 0, -1] | |
precision = precision[precision > -1] | |
ap = np.mean(precision) if precision.size else float("nan") | |
results_per_category.append((f"{name}", float(ap * 100))) | |
# tabulate it | |
n_cols = min(6, len(results_per_category) * 2) | |
results_flatten = list(itertools.chain(*results_per_category)) | |
results_2d = itertools.zip_longest(*[results_flatten[i::n_cols] for i in range(n_cols)]) | |
table = tabulate( | |
results_2d, | |
tablefmt="pipe", | |
floatfmt=".3f", | |
headers=["category", "AP"] * (n_cols // 2), | |
numalign="left", | |
) | |
logger.info(f"Per-category {eval_mode_name} AP: \n" + table) | |
results.update({"AP-" + name: ap for name, ap in results_per_category}) | |
return results | |
def build_densepose_evaluator_storage(cfg: CfgNode, output_folder: str): | |
storage_spec = cfg.DENSEPOSE_EVALUATION.STORAGE | |
if storage_spec == "none": | |
return None | |
evaluator_type = cfg.DENSEPOSE_EVALUATION.TYPE | |
# common output tensor sizes | |
hout = cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE | |
wout = cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE | |
n_csc = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS | |
# specific output tensors | |
if evaluator_type == "iuv": | |
n_fsc = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_PATCHES + 1 | |
schema = { | |
"coarse_segm": SizeData(dtype="float32", shape=(n_csc, hout, wout)), | |
"fine_segm": SizeData(dtype="float32", shape=(n_fsc, hout, wout)), | |
"u": SizeData(dtype="float32", shape=(n_fsc, hout, wout)), | |
"v": SizeData(dtype="float32", shape=(n_fsc, hout, wout)), | |
} | |
elif evaluator_type == "cse": | |
embed_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE | |
schema = { | |
"coarse_segm": SizeData(dtype="float32", shape=(n_csc, hout, wout)), | |
"embedding": SizeData(dtype="float32", shape=(embed_size, hout, wout)), | |
} | |
else: | |
raise ValueError(f"Unknown evaluator type: {evaluator_type}") | |
# storage types | |
if storage_spec == "ram": | |
storage = SingleProcessRamTensorStorage(schema, io.BytesIO()) | |
elif storage_spec == "file": | |
fpath = os.path.join(output_folder, f"DensePoseEvaluatorStorage.{get_rank()}.bin") | |
PathManager.mkdirs(output_folder) | |
storage = SingleProcessFileTensorStorage(schema, fpath, "wb") | |
else: | |
raise ValueError(f"Unknown storage specification: {storage_spec}") | |
return storage | |