Spaces:
No application file
No application file
File size: 79,214 Bytes
538b6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 |
import threading
from extras.inpaint_mask import generate_mask_from_image, SAMOptions
from modules.patch import PatchSettings, patch_settings, patch_all
import modules.config
patch_all()
class AsyncTask:
def __init__(self, args):
from modules.flags import Performance, MetadataScheme, ip_list, disabled
from modules.util import get_enabled_loras
from modules.config import default_max_lora_number
import args_manager
self.args = args.copy()
self.yields = []
self.results = []
self.last_stop = False
self.processing = False
self.performance_loras = []
if len(args) == 0:
return
args.reverse()
self.generate_image_grid = args.pop()
self.prompt = args.pop()
self.negative_prompt = args.pop()
self.style_selections = args.pop()
self.performance_selection = Performance(args.pop())
self.steps = self.performance_selection.steps()
self.original_steps = self.steps
self.aspect_ratios_selection = args.pop()
self.image_number = args.pop()
self.output_format = args.pop()
self.seed = int(args.pop())
self.read_wildcards_in_order = args.pop()
self.sharpness = args.pop()
self.cfg_scale = args.pop()
self.base_model_name = args.pop()
self.refiner_model_name = args.pop()
self.refiner_switch = args.pop()
self.loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in
range(default_max_lora_number)])
self.input_image_checkbox = args.pop()
self.current_tab = args.pop()
self.uov_method = args.pop()
self.uov_input_image = args.pop()
self.outpaint_selections = args.pop()
self.inpaint_input_image = args.pop()
self.inpaint_additional_prompt = args.pop()
self.inpaint_mask_image_upload = args.pop()
self.disable_preview = args.pop()
self.disable_intermediate_results = args.pop()
self.disable_seed_increment = args.pop()
self.black_out_nsfw = args.pop()
self.adm_scaler_positive = args.pop()
self.adm_scaler_negative = args.pop()
self.adm_scaler_end = args.pop()
self.adaptive_cfg = args.pop()
self.clip_skip = args.pop()
self.sampler_name = args.pop()
self.scheduler_name = args.pop()
self.vae_name = args.pop()
self.overwrite_step = args.pop()
self.overwrite_switch = args.pop()
self.overwrite_width = args.pop()
self.overwrite_height = args.pop()
self.overwrite_vary_strength = args.pop()
self.overwrite_upscale_strength = args.pop()
self.mixing_image_prompt_and_vary_upscale = args.pop()
self.mixing_image_prompt_and_inpaint = args.pop()
self.debugging_cn_preprocessor = args.pop()
self.skipping_cn_preprocessor = args.pop()
self.canny_low_threshold = args.pop()
self.canny_high_threshold = args.pop()
self.refiner_swap_method = args.pop()
self.controlnet_softness = args.pop()
self.freeu_enabled = args.pop()
self.freeu_b1 = args.pop()
self.freeu_b2 = args.pop()
self.freeu_s1 = args.pop()
self.freeu_s2 = args.pop()
self.debugging_inpaint_preprocessor = args.pop()
self.inpaint_disable_initial_latent = args.pop()
self.inpaint_engine = args.pop()
self.inpaint_strength = args.pop()
self.inpaint_respective_field = args.pop()
self.inpaint_advanced_masking_checkbox = args.pop()
self.invert_mask_checkbox = args.pop()
self.inpaint_erode_or_dilate = args.pop()
self.save_final_enhanced_image_only = args.pop() if not args_manager.args.disable_image_log else False
self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
self.metadata_scheme = MetadataScheme(
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
self.cn_tasks = {x: [] for x in ip_list}
for _ in range(modules.config.default_controlnet_image_count):
cn_img = args.pop()
cn_stop = args.pop()
cn_weight = args.pop()
cn_type = args.pop()
if cn_img is not None:
self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
self.debugging_dino = args.pop()
self.dino_erode_or_dilate = args.pop()
self.debugging_enhance_masks_checkbox = args.pop()
self.enhance_input_image = args.pop()
self.enhance_checkbox = args.pop()
self.enhance_uov_method = args.pop()
self.enhance_uov_processing_order = args.pop()
self.enhance_uov_prompt_type = args.pop()
self.enhance_ctrls = []
for _ in range(modules.config.default_enhance_tabs):
enhance_enabled = args.pop()
enhance_mask_dino_prompt_text = args.pop()
enhance_prompt = args.pop()
enhance_negative_prompt = args.pop()
enhance_mask_model = args.pop()
enhance_mask_cloth_category = args.pop()
enhance_mask_sam_model = args.pop()
enhance_mask_text_threshold = args.pop()
enhance_mask_box_threshold = args.pop()
enhance_mask_sam_max_detections = args.pop()
enhance_inpaint_disable_initial_latent = args.pop()
enhance_inpaint_engine = args.pop()
enhance_inpaint_strength = args.pop()
enhance_inpaint_respective_field = args.pop()
enhance_inpaint_erode_or_dilate = args.pop()
enhance_mask_invert = args.pop()
if enhance_enabled:
self.enhance_ctrls.append([
enhance_mask_dino_prompt_text,
enhance_prompt,
enhance_negative_prompt,
enhance_mask_model,
enhance_mask_cloth_category,
enhance_mask_sam_model,
enhance_mask_text_threshold,
enhance_mask_box_threshold,
enhance_mask_sam_max_detections,
enhance_inpaint_disable_initial_latent,
enhance_inpaint_engine,
enhance_inpaint_strength,
enhance_inpaint_respective_field,
enhance_inpaint_erode_or_dilate,
enhance_mask_invert
])
self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0)
self.images_to_enhance_count = 0
self.enhance_stats = {}
async_tasks = []
class EarlyReturnException(BaseException):
pass
def worker():
global async_tasks
import os
import traceback
import math
import numpy as np
import torch
import time
import shared
import random
import copy
import cv2
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.patch
import ldm_patched.modules.model_management
import extras.preprocessors as preprocessors
import modules.inpaint_worker as inpaint_worker
import modules.constants as constants
import extras.ip_adapter as ip_adapter
import extras.face_crop
import fooocus_version
from extras.censor import default_censor
from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil,
get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt,
apply_wildcards)
from modules.upscaler import perform_upscale
from modules.flags import Performance
from modules.meta_parser import get_metadata_parser
pid = os.getpid()
print(f'Started worker with PID {pid}')
try:
async_gradio_app = shared.gradio_root
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
if async_gradio_app.share:
flag += f''' or {async_gradio_app.share_url}'''
print(flag)
except Exception as e:
print(e)
def progressbar(async_task, number, text):
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False):
if not isinstance(imgs, list):
imgs = [imgs]
if censor and (modules.config.default_black_out_nsfw or black_out_nsfw):
progressbar(async_task, progressbar_index, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
async_task.results = async_task.results + imgs
if do_not_show_finished_images:
return
async_task.yields.append(['results', async_task.results])
return
def build_image_wall(async_task):
results = []
if len(async_task.results) < 2:
return
for img in async_task.results:
if isinstance(img, str) and os.path.exists(img):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if not isinstance(img, np.ndarray):
return
if img.ndim != 3:
return
results.append(img)
H, W, C = results[0].shape
for img in results:
Hn, Wn, Cn = img.shape
if H != Hn:
return
if W != Wn:
return
if C != Cn:
return
cols = float(len(results)) ** 0.5
cols = int(math.ceil(cols))
rows = float(len(results)) / float(cols)
rows = int(math.ceil(rows))
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)
for y in range(rows):
for x in range(cols):
if y * cols + x < len(results):
img = results[y * cols + x]
wall[y * H:y * H + H, x * W:x * W + W, :] = img
# must use deep copy otherwise gradio is super laggy. Do not use list.append() .
async_task.results = async_task.results + [wall]
return
def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id,
denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond,
negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps,
total_count, show_intermediate_results, persist_image=True):
if async_task.last_stop is not False:
ldm_patched.modules.model_management.interrupt_current_processing()
if 'cn' in goals:
for cn_flag, cn_path in [
(flags.cn_canny, controlnet_canny_path),
(flags.cn_cpds, controlnet_cpds_path)
]:
for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]:
positive_cond, negative_cond = core.apply_controlnet(
positive_cond, negative_cond,
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
imgs = pipeline.process_diffusion(
positive_cond=positive_cond,
negative_cond=negative_cond,
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
sampler_name=async_task.sampler_name,
scheduler_name=final_scheduler_name,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled,
cfg_scale=async_task.cfg_scale,
refiner_swap_method=async_task.refiner_swap_method,
disable_preview=async_task.disable_preview
)
del positive_cond, negative_cond # Save memory
if inpaint_worker.current_task is not None:
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps)
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image)
yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False,
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
return imgs, img_paths, current_progress
def apply_patch_settings(async_task):
patch_settings[pid] = PatchSettings(
async_task.sharpness,
async_task.adm_scaler_end,
async_task.adm_scaler_positive,
async_task.adm_scaler_negative,
async_task.controlnet_softness,
async_task.adaptive_cfg
)
def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list:
img_paths = []
for x in imgs:
d = [('Prompt', 'prompt', task['log_positive_prompt']),
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
('Styles', 'styles',
str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
('Performance', 'performance', async_task.performance_selection.value),
('Steps', 'steps', async_task.steps),
('Resolution', 'resolution', str((width, height))),
('Guidance Scale', 'guidance_scale', async_task.cfg_scale),
('Sharpness', 'sharpness', async_task.sharpness),
('ADM Guidance', 'adm_guidance', str((
modules.patch.patch_settings[pid].positive_adm_scale,
modules.patch.patch_settings[pid].negative_adm_scale,
modules.patch.patch_settings[pid].adm_scaler_end))),
('Base Model', 'base_model', async_task.base_model_name),
('Refiner Model', 'refiner_model', async_task.refiner_model_name),
('Refiner Switch', 'refiner_switch', async_task.refiner_switch)]
if async_task.refiner_model_name != 'None':
if async_task.overwrite_switch > 0:
d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch))
if async_task.refiner_swap_method != flags.refiner_swap_method:
d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method))
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
d.append(
('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
if async_task.clip_skip > 1:
d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip))
d.append(('Sampler', 'sampler', async_task.sampler_name))
d.append(('Scheduler', 'scheduler', async_task.scheduler_name))
d.append(('VAE', 'vae', async_task.vae_name))
d.append(('Seed', 'seed', str(task['task_seed'])))
if async_task.freeu_enabled:
d.append(('FreeU', 'freeu',
str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2))))
for li, (n, w) in enumerate(loras):
if n != 'None':
d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}'))
metadata_parser = None
if async_task.save_metadata_to_images:
metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme)
metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
task['log_negative_prompt'], task['negative'],
async_task.steps, async_task.base_model_name, async_task.refiner_model_name,
loras, async_task.vae_name)
d.append(('Metadata Scheme', 'metadata_scheme',
async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images))
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image))
return img_paths
def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress):
for task in async_task.cn_tasks[flags.cn_canny]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not async_task.skipping_cn_preprocessor:
cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold,
async_task.canny_high_threshold)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not async_task.skipping_cn_preprocessor:
cn_img = preprocessors.cpds(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_ip_face]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
if not async_task.skipping_cn_preprocessor:
cn_img = extras.face_crop.crop_image(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face]
if len(all_ip_tasks) > 0:
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)
def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False):
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
if async_task.overwrite_vary_strength > 0:
denoising_strength = async_task.overwrite_vary_strength
shape_ceil = get_image_shape_ceil(uov_input_image)
if shape_ceil < 1024:
print(f'[Vary] Image is resized because it is too small.')
shape_ceil = 1024
elif shape_ceil > 2048:
print(f'[Vary] Image is resized because it is too big.')
shape_ceil = 2048
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((width, height))}.')
return uov_input_image, denoising_strength, initial_latent, width, height, current_progress
def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image,
inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch,
inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False,
advance_progress=False):
if not skip_apply_outpaint:
inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask)
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
image=inpaint_image,
mask=inpaint_mask,
use_fill=denoising_strength > 0.99,
k=inpaint_respective_field
)
if async_task.debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100,
async_task.black_out_nsfw, do_not_show_finished_images=True)
raise EarlyReturnException
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
latent_inpaint, latent_mask = core.encode_vae_inpaint(
mask=inpaint_pixel_mask,
vae=candidate_vae,
pixels=inpaint_pixel_image)
latent_swap = None
if candidate_vae_swap is not None:
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
latent_fill = core.encode_vae(
vae=candidate_vae,
pixels=inpaint_pixel_fill)['samples']
inpaint_worker.current_task.load_latent(
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
if inpaint_parameterized:
pipeline.final_unet = inpaint_worker.current_task.patch(
inpaint_head_model_path=inpaint_head_model_path,
inpaint_latent=latent_inpaint,
inpaint_latent_mask=latent_mask,
model=pipeline.final_unet
)
if not inpaint_disable_initial_latent:
initial_latent = {'samples': latent_fill}
B, C, H, W = latent_fill.shape
height, width = H * 8, W * 8
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.')
return denoising_strength, initial_latent, width, height, current_progress
def apply_outpaint(async_task, inpaint_image, inpaint_mask):
if len(async_task.outpaint_selections) > 0:
H, W, C = inpaint_image.shape
if 'top' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
constant_values=255)
if 'bottom' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
constant_values=255)
H, W, C = inpaint_image.shape
if 'left' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant',
constant_values=255)
if 'right' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant',
constant_values=255)
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
async_task.inpaint_strength = 1.0
async_task.inpaint_respective_field = 1.0
return inpaint_image, inpaint_mask
def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False):
H, W, C = uov_input_image.shape
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0
shape_ceil = get_shape_ceil(H * f, W * f)
if shape_ceil < 1024:
print(f'[Upscale] Image is resized because it is too small.')
uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
shape_ceil = 1024
else:
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
image_is_super_large = shape_ceil > 2800
if 'fast' in uov_method:
direct_return = True
elif image_is_super_large:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
direct_return = True
else:
direct_return = False
if direct_return:
return direct_return, uov_input_image, None, None, None, None, None, current_progress
tiled = True
denoising_strength = 0.382
if async_task.overwrite_upscale_strength > 0:
denoising_strength = async_task.overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
initial_latent = core.encode_vae(
vae=candidate_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((width, height))}.')
return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress
def apply_overrides(async_task, steps, height, width):
if async_task.overwrite_step > 0:
steps = async_task.overwrite_step
switch = int(round(async_task.steps * async_task.refiner_switch))
if async_task.overwrite_switch > 0:
switch = async_task.overwrite_switch
if async_task.overwrite_width > 0:
width = async_task.overwrite_width
if async_task.overwrite_height > 0:
height = async_task.overwrite_height
return steps, switch, width, height
def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style,
use_synthetic_refiner, current_progress, advance_progress=False):
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
prompt = prompts[0]
negative_prompt = negative_prompts[0]
if prompt == '':
# disable expansion when empty since it is not meaningful and influences image prompt
use_expansion = False
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Loading models ...')
lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames,
async_task.performance_selection)
loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras,
modules.config.default_max_lora_number,
lora_filenames=lora_filenames)
loras += async_task.performance_loras
pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name,
base_model_name=async_task.base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name)
pipeline.set_clip_skip(async_task.clip_skip)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Processing prompts ...')
tasks = []
for i in range(image_number):
if disable_seed_increment:
task_seed = async_task.seed % (constants.MAX_SEED + 1)
else:
task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order)
task_prompt = apply_arrays(task_prompt, i)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
in
extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
in
extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
task_styles = async_task.style_selections.copy()
if use_style:
placeholder_replaced = False
for j, s in enumerate(task_styles):
if s == random_style_name:
s = get_random_style(task_rng)
task_styles[j] = s
p, n, style_has_placeholder = apply_style(s, positive=task_prompt)
if style_has_placeholder:
placeholder_replaced = True
positive_basic_workloads = positive_basic_workloads + p
negative_basic_workloads = negative_basic_workloads + n
if not placeholder_replaced:
positive_basic_workloads = [task_prompt] + positive_basic_workloads
else:
positive_basic_workloads.append(task_prompt)
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative.
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)
tasks.append(dict(
task_seed=task_seed,
task_prompt=task_prompt,
task_negative_prompt=task_negative_prompt,
positive=positive_basic_workloads,
negative=negative_basic_workloads,
expansion='',
c=None,
uc=None,
positive_top_k=len(positive_basic_workloads),
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
styles=task_styles
))
if use_expansion:
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
if abs(float(async_task.cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
return tasks, use_expansion, loras, current_progress
def apply_freeu(async_task):
print(f'FreeU is enabled!')
pipeline.final_unet = core.apply_freeu(
pipeline.final_unet,
async_task.freeu_b1,
async_task.freeu_b2,
async_task.freeu_s1,
async_task.freeu_s2
)
def patch_discrete(unet, scheduler_name):
return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0]
def patch_edm(unet, scheduler_name):
return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0]
def patch_samplers(async_task):
final_scheduler_name = async_task.scheduler_name
if async_task.scheduler_name in ['lcm', 'tcd']:
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name)
elif async_task.scheduler_name == 'edm_playground_v2.5':
final_scheduler_name = 'karras'
if pipeline.final_unet is not None:
pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name)
return final_scheduler_name
def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False):
print('Enter Hyper-SD mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in Hyper-SD mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'dpmpp_sde_gpu'
async_task.scheduler_name = 'karras'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def set_lightning_defaults(async_task, current_progress, advance_progress=False):
print('Enter Lightning mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, 1, 'Downloading Lightning components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in Lightning mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'euler'
async_task.scheduler_name = 'sgm_uniform'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def set_lcm_defaults(async_task, current_progress, advance_progress=False):
print('Enter LCM mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, 1, 'Downloading LCM components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'lcm'
async_task.scheduler_name = 'lcm'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path,
controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask,
inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path,
skip_prompt_processing, use_synthetic_refiner):
if (async_task.current_tab == 'uov' or (
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \
and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None:
async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale(
async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection,
async_task.steps, 1, skip_prompt_processing=skip_prompt_processing)
if (async_task.current_tab == 'inpaint' or (
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \
and isinstance(async_task.inpaint_input_image, dict):
inpaint_image = async_task.inpaint_input_image['image']
inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0]
if async_task.inpaint_advanced_masking_checkbox:
if isinstance(async_task.inpaint_mask_image_upload, dict):
if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray)
and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray)
and async_task.inpaint_mask_image_upload['image'].ndim == 3):
async_task.inpaint_mask_image_upload = np.maximum(
async_task.inpaint_mask_image_upload['image'],
async_task.inpaint_mask_image_upload['mask'])
if isinstance(async_task.inpaint_mask_image_upload,
np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3:
H, W, C = inpaint_image.shape
async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload,
width=W, height=H)
async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2)
async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype(
np.uint8) * 255
inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload)
if int(async_task.inpaint_erode_or_dilate) != 0:
inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate)
if async_task.invert_mask_checkbox:
inpaint_mask = 255 - inpaint_mask
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0):
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if inpaint_parameterized:
progressbar(async_task, 1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
async_task.inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if async_task.refiner_model_name == 'None':
use_synthetic_refiner = True
async_task.refiner_switch = 0.8
else:
inpaint_head_model_path, inpaint_patch_model_path = None, None
print(f'[Inpaint] Parameterized inpaint is disabled.')
if async_task.inpaint_additional_prompt != '':
if async_task.prompt == '':
async_task.prompt = async_task.inpaint_additional_prompt
else:
async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt
goals.append('inpaint')
if async_task.current_tab == 'ip' or \
async_task.mixing_image_prompt_and_vary_upscale or \
async_task.mixing_image_prompt_and_inpaint:
goals.append('cn')
progressbar(async_task, 1, 'Downloading control models ...')
if len(async_task.cn_tasks[flags.cn_canny]) > 0:
controlnet_canny_path = modules.config.downloading_controlnet_canny()
if len(async_task.cn_tasks[flags.cn_cpds]) > 0:
controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
if len(async_task.cn_tasks[flags.cn_ip]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
if len(async_task.cn_tasks[flags.cn_ip_face]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
'face')
if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None:
goals.append('enhance')
skip_prompt_processing = True
async_task.enhance_input_image = HWC3(async_task.enhance_input_image)
return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner
def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress,
advance_progress=False, skip_prompt_processing=False):
uov_input_image = HWC3(uov_input_image)
if 'vary' in uov_method:
goals.append('vary')
elif 'upscale' in uov_method:
goals.append('upscale')
if 'fast' in uov_method:
skip_prompt_processing = True
steps = 0
else:
steps = performance.steps_uov()
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
return uov_input_image, skip_prompt_processing, steps
def prepare_enhance_prompt(prompt: str, fallback_prompt: str):
if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0:
prompt = fallback_prompt
return prompt
def stop_processing(async_task, processing_start_time):
async_task.processing = False
processing_time = time.perf_counter() - processing_start_time
print(f'Processing time (total): {processing_time:.2f} seconds')
def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent,
inpaint_engine, inpaint_respective_field, inpaint_strength,
prompt, negative_prompt, final_scheduler_name, goals, height, img, mask,
preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style,
use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True):
base_model_additional_loras = []
inpaint_head_model_path = None
inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail
initial_latent = None
prompt = prepare_enhance_prompt(prompt, async_task.prompt)
negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt)
if 'vary' in goals:
img, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress)
if 'upscale' in goals:
direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
async_task, img, async_task.enhance_uov_method, switch, current_progress)
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
img = default_censor(img)
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image)
yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False,
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
return current_progress, img, prompt, negative_prompt
if 'inpaint' in goals and inpaint_parameterized:
progressbar(async_task, current_progress, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
inpaint_engine)
if inpaint_patch_model_path not in base_model_additional_loras:
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
progressbar(async_task, current_progress, 'Preparing enhance prompts ...')
# positive and negative conditioning aren't available here anymore, process prompt again
tasks_enhance, use_expansion, loras, current_progress = process_prompt(
async_task, prompt, negative_prompt, base_model_additional_loras, 1, True,
use_expansion, use_style, use_synthetic_refiner, current_progress)
task_enhance = tasks_enhance[0]
# TODO could support vary, upscale and CN in the future
# if 'cn' in goals:
# apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width)
if async_task.freeu_enabled:
apply_freeu(async_task)
patch_samplers(async_task)
if 'inpaint' in goals:
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(
async_task, None, inpaint_head_model_path, img, mask,
inpaint_parameterized, inpaint_strength,
inpaint_respective_field, switch, inpaint_disable_initial_latent,
current_progress, True)
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_task_id, denoising_strength,
final_scheduler_name, goals, initial_latent, steps, switch,
task_enhance['c'], task_enhance['uc'], task_enhance, loras,
tiled, use_expansion, width, height, current_progress,
preparation_steps, total_count, show_intermediate_results,
persist_image)
del task_enhance['c'], task_enhance['uc'] # Save memory
return current_progress, imgs[0], prompt, negative_prompt
def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled,
total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True):
# reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting
inpaint_worker.current_task = None
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
goals_enhance = []
img, skip_prompt_processing, steps = prepare_upscale(
async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection,
enhance_steps, current_progress)
steps, _, _, _ = apply_overrides(async_task, steps, height, width)
exception_result = ''
if len(goals_enhance) > 0:
try:
current_progress, img, prompt, negative_prompt = process_enhance(
all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name,
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image)
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
# also skip all enhance steps for this image, but add the steps to the progress bar
if async_task.enhance_uov_processing_order == flags.enhancement_uov_before:
done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps
exception_result = 'continue'
else:
print('User stopped')
exception_result = 'break'
finally:
done_steps_upscaling += steps
return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result
@torch.no_grad()
@torch.inference_mode()
def handler(async_task: AsyncTask):
preparation_start_time = time.perf_counter()
async_task.processing = True
async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections]
base_model_additional_loras = []
async_task.uov_method = async_task.uov_method.casefold()
async_task.enhance_uov_method = async_task.enhance_uov_method.casefold()
if fooocus_expansion in async_task.style_selections:
use_expansion = True
async_task.style_selections.remove(fooocus_expansion)
else:
use_expansion = False
use_style = len(async_task.style_selections) > 0
if async_task.base_model_name == async_task.refiner_model_name:
print(f'Refiner disabled because base model and refiner are same.')
async_task.refiner_model_name = 'None'
current_progress = 0
if async_task.performance_selection == Performance.EXTREME_SPEED:
set_lcm_defaults(async_task, current_progress, advance_progress=True)
elif async_task.performance_selection == Performance.LIGHTNING:
set_lightning_defaults(async_task, current_progress, advance_progress=True)
elif async_task.performance_selection == Performance.HYPER_SD:
set_hyper_sd_defaults(async_task, current_progress, advance_progress=True)
print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}')
print(f'[Parameters] CLIP Skip = {async_task.clip_skip}')
print(f'[Parameters] Sharpness = {async_task.sharpness}')
print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}')
print(f'[Parameters] ADM Scale = '
f'{async_task.adm_scaler_positive} : '
f'{async_task.adm_scaler_negative} : '
f'{async_task.adm_scaler_end}')
print(f'[Parameters] Seed = {async_task.seed}')
apply_patch_settings(async_task)
print(f'[Parameters] CFG = {async_task.cfg_scale}')
initial_latent = None
denoising_strength = 1.0
tiled = False
width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
width, height = int(width), int(height)
skip_prompt_processing = False
inpaint_worker.current_task = None
inpaint_parameterized = async_task.inpaint_engine != 'None'
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
use_synthetic_refiner = False
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
goals = []
tasks = []
current_progress = 1
if async_task.input_image_checkbox:
base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input(
async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path,
goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path,
ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner)
# Load or unload CNs
progressbar(async_task, current_progress, 'Loading control models ...')
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)
async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width)
print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}')
print(f'[Parameters] Steps = {async_task.steps} - {switch}')
progressbar(async_task, current_progress, 'Initializing ...')
loras = async_task.loras
if not skip_prompt_processing:
tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt,
base_model_additional_loras, async_task.image_number,
async_task.disable_seed_increment, use_expansion, use_style,
use_synthetic_refiner, current_progress, advance_progress=True)
if len(goals) > 0:
current_progress += 1
progressbar(async_task, current_progress, 'Image processing ...')
should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0)
if 'vary' in goals:
async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch,
current_progress)
if 'upscale' in goals:
direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress,
advance_progress=True)
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, 100, 'Checking for NSFW content ...')
async_task.uov_input_image = default_censor(async_task.uov_input_image)
progressbar(async_task, 100, 'Saving image to system ...')
uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format)
yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False,
do_not_show_finished_images=True)
return
if 'inpaint' in goals:
try:
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(async_task,
initial_latent,
inpaint_head_model_path,
inpaint_image,
inpaint_mask,
inpaint_parameterized,
async_task.inpaint_strength,
async_task.inpaint_respective_field,
switch,
async_task.inpaint_disable_initial_latent,
current_progress,
advance_progress=True)
except EarlyReturnException:
return
if 'cn' in goals:
apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress)
if async_task.debugging_cn_preprocessor:
return
if async_task.freeu_enabled:
apply_freeu(async_task)
# async_task.steps can have value of uov steps here when upscale has been applied
steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width)
images_to_enhance = []
if 'enhance' in goals:
async_task.image_number = 1
images_to_enhance += [async_task.enhance_input_image]
height, width, _ = async_task.enhance_input_image.shape
# input image already provided, processing is skipped
steps = 0
yield_result(async_task, async_task.enhance_input_image, current_progress, async_task.black_out_nsfw, False,
async_task.disable_intermediate_results)
all_steps = steps * async_task.image_number
if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold():
enhance_upscale_steps = async_task.performance_selection.steps()
if 'upscale' in async_task.enhance_uov_method:
if 'fast' in async_task.enhance_uov_method:
enhance_upscale_steps = 0
else:
enhance_upscale_steps = async_task.performance_selection.steps_uov()
enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width)
enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps
all_steps += enhance_upscale_steps_total
if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0:
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps
all_steps = max(all_steps, 1)
print(f'[Parameters] Denoising Strength = {denoising_strength}')
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
log_shape = initial_latent['samples'].shape
else:
log_shape = f'Image Space {(height, width)}'
print(f'[Parameters] Initial Latent shape: {log_shape}')
preparation_time = time.perf_counter() - preparation_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')
final_scheduler_name = patch_samplers(async_task)
print(f'Using {final_scheduler_name} scheduler.')
async_task.yields.append(['preview', (current_progress, 'Moving model to GPU ...', None)])
processing_start_time = time.perf_counter()
preparation_steps = current_progress
total_count = async_task.image_number
def callback(step, x0, x, total_steps, y):
if step == 0:
async_task.callback_steps = 0
async_task.callback_steps += (100 - preparation_steps) / float(all_steps)
async_task.yields.append(['preview', (
int(current_progress + async_task.callback_steps),
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)])
show_intermediate_results = len(tasks) > 1 or async_task.should_enhance
persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only
for current_task_id, task in enumerate(tasks):
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...')
execution_start_time = time.perf_counter()
try:
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_task_id,
denoising_strength, final_scheduler_name, goals,
initial_latent, async_task.steps, switch, task['c'],
task['uc'], task, loras, tiled, use_expansion, width,
height, current_progress, preparation_steps,
async_task.image_number, show_intermediate_results,
persist_image)
current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1))
images_to_enhance += imgs
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
continue
else:
print('User stopped')
break
del task['c'], task['uc'] # Save memory
execution_time = time.perf_counter() - execution_start_time
print(f'Generating and saving time: {execution_time:.2f} seconds')
if not async_task.should_enhance:
print(f'[Enhance] Skipping, preconditions aren\'t met')
stop_processing(async_task, processing_start_time)
return
progressbar(async_task, current_progress, 'Processing enhance ...')
active_enhance_tabs = len(async_task.enhance_ctrls)
should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold()
enhance_uov_before = False
enhance_uov_after = False
if should_process_enhance_uov:
active_enhance_tabs += 1
enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before
enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after
total_count = len(images_to_enhance) * active_enhance_tabs
async_task.images_to_enhance_count = len(images_to_enhance)
base_progress = current_progress
current_task_id = -1
done_steps_upscaling = 0
done_steps_inpainting = 0
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
exception_result = None
for index, img in enumerate(images_to_enhance):
async_task.enhance_stats[index] = 0
enhancement_image_start_time = time.perf_counter()
last_enhance_prompt = async_task.prompt
last_enhance_negative_prompt = async_task.negative_prompt
if enhance_uov_before:
current_task_id += 1
persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps,
switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image)
async_task.enhance_stats[index] += 1
if exception_result == 'continue':
continue
elif exception_result == 'break':
break
# inpaint for all other tabs
for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls:
current_task_id += 1
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
enhancement_task_start_time = time.perf_counter()
is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after
persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image
extras = {}
if enhance_mask_model == 'sam':
print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"')
elif enhance_mask_model == 'u2net_cloth_seg':
extras['cloth_category'] = enhance_mask_cloth_category
mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image(
img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions(
dino_prompt=enhance_mask_dino_prompt_text,
dino_box_threshold=enhance_mask_box_threshold,
dino_text_threshold=enhance_mask_text_threshold,
dino_erode_or_dilate=async_task.dino_erode_or_dilate,
dino_debug=async_task.debugging_dino,
max_detections=enhance_mask_sam_max_detections,
model_type=enhance_mask_sam_model,
))
if len(mask.shape) == 3:
mask = mask[:, :, 0]
if int(enhance_inpaint_erode_or_dilate) != 0:
mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate)
if enhance_mask_invert:
mask = 255 - mask
if async_task.debugging_enhance_masks_checkbox:
async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)])
yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False,
async_task.disable_intermediate_results)
async_task.enhance_stats[index] += 1
print(f'[Enhance] {dino_detection_count} boxes detected')
print(f'[Enhance] {sam_detection_count} segments detected in boxes')
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')
if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
continue
goals_enhance = ['inpaint']
try:
current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance(
all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent,
enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength,
enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask,
preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style,
use_synthetic_refiner, width, persist_image=persist_image)
async_task.enhance_stats[index] += 1
if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after
and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled):
if enhance_prompt_processed != '':
last_enhance_prompt = enhance_prompt_processed
if enhance_negative_prompt_processed != '':
last_enhance_negative_prompt = enhance_negative_prompt_processed
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
continue
else:
print('User stopped')
exception_result = 'break'
break
finally:
done_steps_inpainting += enhance_steps
enhancement_task_time = time.perf_counter() - enhancement_task_start_time
print(f'Enhancement time: {enhancement_task_time:.2f} seconds')
if exception_result == 'break':
break
if enhance_uov_after:
current_task_id += 1
# last step in enhance, always save
persist_image = True
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img,
preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner,
width, persist_image)
async_task.enhance_stats[index] += 1
if exception_result == 'continue':
continue
elif exception_result == 'break':
break
enhancement_image_time = time.perf_counter() - enhancement_image_start_time
print(f'Enhancement image time: {enhancement_image_time:.2f} seconds')
stop_processing(async_task, processing_start_time)
return
while True:
time.sleep(0.01)
if len(async_tasks) > 0:
task = async_tasks.pop(0)
try:
handler(task)
if task.generate_image_grid:
build_image_wall(task)
task.yields.append(['finish', task.results])
pipeline.prepare_text_encoder(async_call=True)
except:
traceback.print_exc()
task.yields.append(['finish', task.results])
finally:
if pid in modules.patch.patch_settings:
del modules.patch.patch_settings[pid]
pass
threading.Thread(target=worker, daemon=True).start()
|