Update app.py
Browse files
app.py
CHANGED
|
@@ -15,11 +15,16 @@ import re
|
|
| 15 |
from werkzeug.utils import secure_filename
|
| 16 |
import torch
|
| 17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 18 |
|
| 19 |
app = Flask(__name__)
|
| 20 |
|
| 21 |
PORT = int(os.environ.get("PORT", 7860))
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
UPLOAD_FOLDER = '/tmp/uploads' # Change to tmp directory for Spaces
|
| 24 |
ALLOWED_EXTENSIONS = {'py'}
|
| 25 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
@@ -28,33 +33,38 @@ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
|
| 28 |
DATABASE_PATH = '/tmp/chat_database.db'
|
| 29 |
|
| 30 |
# Initialize LangChain with Ollama LLM
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
-
model_name = "
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
model_name
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
pipe = pipeline(
|
| 46 |
-
"text-generation",
|
| 47 |
-
model=model,
|
| 48 |
-
tokenizer=tokenizer,
|
| 49 |
-
max_new_tokens=512,
|
| 50 |
-
temperature=0.7,
|
| 51 |
-
top_p=0.95,
|
| 52 |
-
repetition_penalty=1.15
|
| 53 |
-
)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
|
| 59 |
@contextmanager
|
| 60 |
def get_db_connection():
|
|
|
|
| 15 |
from werkzeug.utils import secure_filename
|
| 16 |
import torch
|
| 17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 18 |
+
from huggingface_hub import login
|
| 19 |
|
| 20 |
app = Flask(__name__)
|
| 21 |
|
| 22 |
PORT = int(os.environ.get("PORT", 7860))
|
| 23 |
|
| 24 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 25 |
+
if hf_token:
|
| 26 |
+
login(HF_TOKEN)
|
| 27 |
+
|
| 28 |
UPLOAD_FOLDER = '/tmp/uploads' # Change to tmp directory for Spaces
|
| 29 |
ALLOWED_EXTENSIONS = {'py'}
|
| 30 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
|
| 33 |
DATABASE_PATH = '/tmp/chat_database.db'
|
| 34 |
|
| 35 |
# Initialize LangChain with Ollama LLM
|
| 36 |
+
if hf_token:
|
| 37 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 38 |
+
else:
|
| 39 |
+
# Fallback to a free, smaller model
|
| 40 |
+
model_name = "microsoft/phi-4"
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
model_name,
|
| 46 |
+
torch_dtype=torch.float16,
|
| 47 |
+
device_map="auto",
|
| 48 |
+
load_in_8bit=True
|
| 49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# Create pipeline
|
| 52 |
+
pipe = pipeline(
|
| 53 |
+
"text-generation",
|
| 54 |
+
model=model,
|
| 55 |
+
tokenizer=tokenizer,
|
| 56 |
+
max_new_tokens=512,
|
| 57 |
+
temperature=0.7,
|
| 58 |
+
top_p=0.95,
|
| 59 |
+
repetition_penalty=1.15
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
# Initialize LangChain with HuggingFacePipeline
|
| 63 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 64 |
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Error loading model: {e}")
|
| 67 |
+
raise
|
| 68 |
|
| 69 |
@contextmanager
|
| 70 |
def get_db_connection():
|