File size: 9,204 Bytes
c64fb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a531efa
c64fb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import gradio as gr
import torch

from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
from API_LLaVA.hook import hook_logger as llava_hook_logger
from API_LLaVA.main import blend_mask as llava_blend_mask

from API_CLIP.main import get_model as clip_get_model, gen_mask as clip_gen_mask, blend_mask as clip_blend_mask

DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

MARKDOWN = """
<div align='center'>
    <h1>
        API: Attention Prompting on Image for Large Vision-Language Models
    </h1>
    <br>
    [<a href="https://arxiv.org/abs/"> arXiv paper </a>] 
    [<a href="https://api.github.io"> project page </a>]
    [<a href="https://github.com/roboflow/api"> python package </a>]
    [<a href="https://github.com/yu-rp/apiprompting"> code </a>]
</div>
"""

def init_clip():
    clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(model_name = "ViT-L-14-336", layer_index = 22, device= DEVICE)
    return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}

def init_llava():
    llava_tokenizer, llava_model, llava_image_processor, llava_context_len, llava_model_name = llava_get_model("llava-v1.5-13b", device= DEVICE)
    llava_hl = llava_hook_logger(llava_model, DEVICE, layer_index = 20)
    return {"llava_tokenizer": llava_tokenizer, "llava_model": llava_model, "llava_image_processor": llava_image_processor, "llava_context_len": llava_context_len, "llava_model_name": llava_model_name, "llava_hl": llava_hl}

def change_api_method(api_method):
    new_text_pre_answer = gr.Textbox(
        label="LLaVA Response",
        info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
        placeholder="",
        value = "",
        lines=4,
        interactive=False,
        type="text")
    new_image_output = gr.Image(
            label="API Masked Image",
            type="pil",
            interactive=False,
            height=512
        )
    if api_method == "CLIP_Based API":
        model_dict = init_clip()
        new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
    elif api_method == "LLaVA_Based API":
        model_dict = init_llava()
        new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=True)
    else:
        raise NotImplementedError
    return model_dict, {}, new_generate_llava_response_button, new_text_pre_answer, new_image_output

def clear_cache(cache_dict):
    return {}

def clear_mask_cache(cache_dict):
    if "llava_mask" in cache_dict.keys():
        del cache_dict["llava_mask"] 
    if "clip_mask" in cache_dict.keys():
        del cache_dict["clip_mask"] 
    return cache_dict

def llava_pre_answer(image, query, cache_dict, model_dict):
    pre_answer, cache_dict_update = llava_get_preanswer(
        model_dict["llava_model"], 
        model_dict["llava_model_name"], 
        model_dict["llava_hl"], 
        model_dict["llava_tokenizer"], 
        model_dict["llava_image_processor"], 
        model_dict["llava_context_len"], 
        query, image)
    cache_dict.update(cache_dict_update)
    return pre_answer, cache_dict

def generate_mask(
        image, 
        query, 
        pre_answer,
        highlight_text,
        api_method,
        enhance_coe,
        kernel_size,
        interpolate_method_name,
        mask_grayscale,
        cache_dict,
        model_dict):
    if api_method == "LLaVA_Based API":
        assert highlight_text.strip() in pre_answer
        if "llava_mask" in cache_dict.keys() and cache_dict["llava_mask"] is not None:
            pass
        else:
            cache_dict["llava_mask"] = llava_from_preanswer_to_mask(highlight_text, pre_answer, cache_dict)
        masked_image = llava_blend_mask(image, cache_dict["llava_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
    elif api_method == "CLIP_Based API":
        # assert highlight_text in query
        if "clip_mask" in cache_dict.keys() and cache_dict["clip_mask"] is not None:
            pass
        else:
            cache_dict["clip_mask"] = clip_gen_mask(
                model_dict["clip_model"], 
                model_dict["clip_prs"], 
                model_dict["clip_preprocess"], 
                DEVICE, 
                model_dict["clip_tokenizer"], 
                [image], 
                [highlight_text if highlight_text.strip() != "" else query])
        masked_image = clip_blend_mask(image, *cache_dict["clip_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
    else:
        raise NotImplementedError
    return masked_image, cache_dict


image_input = gr.Image(
    label="Input Image",
    type="pil",
    interactive=True,
    height=512
)
image_output = gr.Image(
    label="API Masked Image",
    type="pil",
    interactive=False,
    height=512
)

text_query = gr.Textbox(
    label="Query",
    placeholder="Enter a query about the image",
    lines=4,
    type="text")
text_pre_answer = gr.Textbox(
    label="LLaVA Response",
    info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
    placeholder="",
    lines=4,
    interactive=False,
    type="text")
text_highlight_text = gr.Textbox(
    label = "Hint Text.",
    info = "The text based on which the mask will be generated. For CLIP-Based API, it should be a substring of the query. For LLaVA-Based API, it should be a substring of the pre-answer.",
    placeholder="Enter the hint text",
    lines=1,
    type="text")

radio_api_method = gr.Radio(
    ["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"], 
    interactive=True,
    value = "CLIP_Based API",
    label="Type of API")
slider_mask_grayscale = gr.Slider(
    minimum=0,
    maximum=255,
    step = 0.5,
    value=100,
    interactive=True,
    info = "0: black mask, 255: white mask.",
    label="Grayscale")
slider_enhance_coe = gr.Slider(
    minimum=1,
    maximum=50,
    step = 1,
    value=1,
    interactive=True,
    info = "The larger contrast, the greater the contrast between the bright and dark areas of the mask.",
    label="Contrast")
slider_kernel_size = gr.Slider(
    minimum=1,
    maximum=9,
    step = 2,
    value=1,
    interactive=True,
    info = "The larger smoothness, the smoother the mask appears, reducing the rectangular shapes.",
    label="Smoothness")
radio_interpolate_method_name = gr.Radio(
    ["BICUBIC",  "BILINEAR","BOX","LANCZOS", "NEAREST"], 
    value = "BICUBIC",
    interactive=True,
    label="Interpolation Method", 
    info="The interpolation method used during mask resizing.")

generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
generate_mask_button = gr.Button("API Go!")

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    state_cache = gr.State({})
    state_model = gr.State(init_clip())
    with gr.Row():
        with gr.Column():
            image_input.render()
        with gr.Column():
            image_output.render()           
    with gr.Row():
        radio_api_method.render()
    with gr.Row():
        with gr.Column():
            with gr.Row():
                text_query.render()
            with gr.Row():
                generate_llava_response_button.render()
            with gr.Row():
                text_pre_answer.render()
            with gr.Row():
                text_highlight_text.render()
        with gr.Column():
            with gr.Row():
                slider_enhance_coe.render()
            with gr.Row():
                slider_kernel_size.render()
            with gr.Row():
                radio_interpolate_method_name.render()
            with gr.Row():
                slider_mask_grayscale.render()
            generate_mask_button.render()

    radio_api_method.change(
        fn=change_api_method,
        inputs = [radio_api_method],
        outputs=[state_model, state_cache, generate_llava_response_button, text_pre_answer, image_output]
    )

    image_input.change(
        fn=clear_cache,
        inputs = state_cache,
        outputs=state_cache
    )
    text_query.change(
        fn=clear_cache,
        inputs = state_cache,
        outputs=state_cache
    )
    text_highlight_text.change(
        fn=clear_mask_cache,
        inputs = state_cache,
        outputs=state_cache
    )

    generate_llava_response_button.click(
        fn=llava_pre_answer,
        inputs=[image_input, text_query, state_cache, state_model],
        outputs=[text_pre_answer, state_cache]
    )
    generate_mask_button.click(
        fn=generate_mask,
        inputs=[
            image_input, 
            text_query, 
            text_pre_answer,
            text_highlight_text,
            radio_api_method,
            slider_enhance_coe,
            slider_kernel_size,
            radio_interpolate_method_name,
            slider_mask_grayscale,
            state_cache,
            state_model
            ],
        outputs=[image_output, state_cache]
    )

demo.queue(max_size = 1).launch(show_error=True)