Spaces:
Running
Running
File size: 9,204 Bytes
c64fb9f a531efa c64fb9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
import gradio as gr
import torch
from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
from API_LLaVA.hook import hook_logger as llava_hook_logger
from API_LLaVA.main import blend_mask as llava_blend_mask
from API_CLIP.main import get_model as clip_get_model, gen_mask as clip_gen_mask, blend_mask as clip_blend_mask
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MARKDOWN = """
<div align='center'>
<h1>
API: Attention Prompting on Image for Large Vision-Language Models
</h1>
<br>
[<a href="https://arxiv.org/abs/"> arXiv paper </a>]
[<a href="https://api.github.io"> project page </a>]
[<a href="https://github.com/roboflow/api"> python package </a>]
[<a href="https://github.com/yu-rp/apiprompting"> code </a>]
</div>
"""
def init_clip():
clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(model_name = "ViT-L-14-336", layer_index = 22, device= DEVICE)
return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}
def init_llava():
llava_tokenizer, llava_model, llava_image_processor, llava_context_len, llava_model_name = llava_get_model("llava-v1.5-13b", device= DEVICE)
llava_hl = llava_hook_logger(llava_model, DEVICE, layer_index = 20)
return {"llava_tokenizer": llava_tokenizer, "llava_model": llava_model, "llava_image_processor": llava_image_processor, "llava_context_len": llava_context_len, "llava_model_name": llava_model_name, "llava_hl": llava_hl}
def change_api_method(api_method):
new_text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
value = "",
lines=4,
interactive=False,
type="text")
new_image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
if api_method == "CLIP_Based API":
model_dict = init_clip()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
elif api_method == "LLaVA_Based API":
model_dict = init_llava()
new_generate_llava_response_button = gr.Button("Pre-Answer", interactive=True)
else:
raise NotImplementedError
return model_dict, {}, new_generate_llava_response_button, new_text_pre_answer, new_image_output
def clear_cache(cache_dict):
return {}
def clear_mask_cache(cache_dict):
if "llava_mask" in cache_dict.keys():
del cache_dict["llava_mask"]
if "clip_mask" in cache_dict.keys():
del cache_dict["clip_mask"]
return cache_dict
def llava_pre_answer(image, query, cache_dict, model_dict):
pre_answer, cache_dict_update = llava_get_preanswer(
model_dict["llava_model"],
model_dict["llava_model_name"],
model_dict["llava_hl"],
model_dict["llava_tokenizer"],
model_dict["llava_image_processor"],
model_dict["llava_context_len"],
query, image)
cache_dict.update(cache_dict_update)
return pre_answer, cache_dict
def generate_mask(
image,
query,
pre_answer,
highlight_text,
api_method,
enhance_coe,
kernel_size,
interpolate_method_name,
mask_grayscale,
cache_dict,
model_dict):
if api_method == "LLaVA_Based API":
assert highlight_text.strip() in pre_answer
if "llava_mask" in cache_dict.keys() and cache_dict["llava_mask"] is not None:
pass
else:
cache_dict["llava_mask"] = llava_from_preanswer_to_mask(highlight_text, pre_answer, cache_dict)
masked_image = llava_blend_mask(image, cache_dict["llava_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
elif api_method == "CLIP_Based API":
# assert highlight_text in query
if "clip_mask" in cache_dict.keys() and cache_dict["clip_mask"] is not None:
pass
else:
cache_dict["clip_mask"] = clip_gen_mask(
model_dict["clip_model"],
model_dict["clip_prs"],
model_dict["clip_preprocess"],
DEVICE,
model_dict["clip_tokenizer"],
[image],
[highlight_text if highlight_text.strip() != "" else query])
masked_image = clip_blend_mask(image, *cache_dict["clip_mask"], enhance_coe, kernel_size, interpolate_method_name, mask_grayscale)
else:
raise NotImplementedError
return masked_image, cache_dict
image_input = gr.Image(
label="Input Image",
type="pil",
interactive=True,
height=512
)
image_output = gr.Image(
label="API Masked Image",
type="pil",
interactive=False,
height=512
)
text_query = gr.Textbox(
label="Query",
placeholder="Enter a query about the image",
lines=4,
type="text")
text_pre_answer = gr.Textbox(
label="LLaVA Response",
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
placeholder="",
lines=4,
interactive=False,
type="text")
text_highlight_text = gr.Textbox(
label = "Hint Text.",
info = "The text based on which the mask will be generated. For CLIP-Based API, it should be a substring of the query. For LLaVA-Based API, it should be a substring of the pre-answer.",
placeholder="Enter the hint text",
lines=1,
type="text")
radio_api_method = gr.Radio(
["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"],
interactive=True,
value = "CLIP_Based API",
label="Type of API")
slider_mask_grayscale = gr.Slider(
minimum=0,
maximum=255,
step = 0.5,
value=100,
interactive=True,
info = "0: black mask, 255: white mask.",
label="Grayscale")
slider_enhance_coe = gr.Slider(
minimum=1,
maximum=50,
step = 1,
value=1,
interactive=True,
info = "The larger contrast, the greater the contrast between the bright and dark areas of the mask.",
label="Contrast")
slider_kernel_size = gr.Slider(
minimum=1,
maximum=9,
step = 2,
value=1,
interactive=True,
info = "The larger smoothness, the smoother the mask appears, reducing the rectangular shapes.",
label="Smoothness")
radio_interpolate_method_name = gr.Radio(
["BICUBIC", "BILINEAR","BOX","LANCZOS", "NEAREST"],
value = "BICUBIC",
interactive=True,
label="Interpolation Method",
info="The interpolation method used during mask resizing.")
generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
generate_mask_button = gr.Button("API Go!")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
state_cache = gr.State({})
state_model = gr.State(init_clip())
with gr.Row():
with gr.Column():
image_input.render()
with gr.Column():
image_output.render()
with gr.Row():
radio_api_method.render()
with gr.Row():
with gr.Column():
with gr.Row():
text_query.render()
with gr.Row():
generate_llava_response_button.render()
with gr.Row():
text_pre_answer.render()
with gr.Row():
text_highlight_text.render()
with gr.Column():
with gr.Row():
slider_enhance_coe.render()
with gr.Row():
slider_kernel_size.render()
with gr.Row():
radio_interpolate_method_name.render()
with gr.Row():
slider_mask_grayscale.render()
generate_mask_button.render()
radio_api_method.change(
fn=change_api_method,
inputs = [radio_api_method],
outputs=[state_model, state_cache, generate_llava_response_button, text_pre_answer, image_output]
)
image_input.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_query.change(
fn=clear_cache,
inputs = state_cache,
outputs=state_cache
)
text_highlight_text.change(
fn=clear_mask_cache,
inputs = state_cache,
outputs=state_cache
)
generate_llava_response_button.click(
fn=llava_pre_answer,
inputs=[image_input, text_query, state_cache, state_model],
outputs=[text_pre_answer, state_cache]
)
generate_mask_button.click(
fn=generate_mask,
inputs=[
image_input,
text_query,
text_pre_answer,
text_highlight_text,
radio_api_method,
slider_enhance_coe,
slider_kernel_size,
radio_interpolate_method_name,
slider_mask_grayscale,
state_cache,
state_model
],
outputs=[image_output, state_cache]
)
demo.queue(max_size = 1).launch(show_error=True) |