File size: 4,488 Bytes
c64fb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import time
import numpy as np
import torch
from PIL import Image
import glob
import sys
import argparse
import datetime
import json
from pathlib import Path

class MaskHookLogger(object):
    def __init__(self, model, device):
        self.current_layer = 0
        self.device = device
        self.attentions = []
        self.mlps = []
        self.post_ln_std = None
        self.post_ln_mean = None
        self.model = model
        
    @torch.no_grad()
    def compute_attentions(self, ret):
        if self.current_layer == self.layer_index:
            bias_term = self.model.visual.transformer.resblocks[self.current_layer].attn.out_proj.bias
            return_value = ret[:, 0]
            return_value = return_value +  bias_term[np.newaxis, np.newaxis] / (return_value.shape[1])# [b, n, d]
            self.attentions.append(return_value.detach()) 
        self.current_layer += 1
        return ret
    
    @torch.no_grad()
    def compute_mlps(self, ret):
        if self.current_layer == self.layer_index + 1:
            self.mlps.append(ret[:, 1:].detach()) # [b, n, d] 
        return ret
    
    @torch.no_grad()
    def log_post_ln_mean(self, ret):
        self.post_ln_mean = ret.detach() # [b, 1]
        return ret
        
    @torch.no_grad()
    def log_post_ln_std(self, ret):
        self.post_ln_std = ret.detach() # [b, 1] 
        return ret
    
    def _normalize_mlps(self):
        len_intermediates = self.current_layer * 2 - 1
        # This is just the normalization layer:
        mean_centered = (self.mlps - 
                         self.post_ln_mean[:, :, np.newaxis, np.newaxis] / len_intermediates)

        weighted_mean_centered = self.model.visual.ln_post.weight.detach() * mean_centered
        weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[:, :, np.newaxis, np.newaxis]

        bias_term = self.model.visual.ln_post.bias.detach() / len_intermediates
        post_ln = weighted_mean_by_std + bias_term
        return post_ln @ self.model.visual.proj.detach()
    
    def _normalize_attentions(self):
        len_intermediates = self.current_layer * 2 - 1 # 2*l + 1
        normalization_term = self.attentions.shape[2] * 1  # n * h, h=1
        # This is just the normalization layer:
        mean_centered = (self.attentions - 
                         self.post_ln_mean[:, :, np.newaxis, np.newaxis] / 
                         (len_intermediates * normalization_term))
        weighted_mean_centered = self.model.visual.ln_post.weight.detach() * mean_centered
        weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[:, :, np.newaxis, np.newaxis]
        bias_term = self.model.visual.ln_post.bias.detach() / (len_intermediates * normalization_term)
        post_ln = weighted_mean_by_std + bias_term
        return post_ln @ self.model.visual.proj.detach()
    
    @torch.no_grad()
    def finalize(self, representation):
        """We calculate the post-ln scaling, project it and normalize by the last norm."""
        self.attentions = torch.stack(self.attentions, axis=1) # [b, 1, n, d]
        self.mlps = torch.stack(self.mlps, axis=1) # [b, 1, n, d]
        projected_attentions = self._normalize_attentions()
        projected_mlps = self._normalize_mlps()
        norm = representation.norm(dim=-1).detach()
        return (projected_attentions / norm[:, np.newaxis, np.newaxis, np.newaxis], 
                projected_mlps / norm[:, np.newaxis, np.newaxis, np.newaxis])
        
    def reinit(self):
        self.current_layer = 0
        self.attentions = []
        self.mlps = []
        self.post_ln_mean = None
        self.post_ln_std = None
        torch.cuda.empty_cache()


def hook_prs_logger(model, device, layer_index = 23):
    """Hooks a projected residual stream logger to the model."""
    prs = MaskHookLogger(model, device)
    model.hook_manager.register('visual.transformer.resblocks.*.attn.out.post', 
                                prs.compute_attentions)

    model.hook_manager.register('visual.transformer.resblocks.*.post', 
                                prs.compute_mlps)
    model.hook_manager.register('visual.ln_pre_post', 
                                prs.compute_mlps)
    model.hook_manager.register('visual.ln_post.mean', 
                                prs.log_post_ln_mean)
    model.hook_manager.register('visual.ln_post.sqrt_var', 
                                prs.log_post_ln_std)
    prs.layer_index = layer_index

    return prs