File size: 4,269 Bytes
c64fb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from itertools import repeat
import collections.abc

import torch
from torch import nn as nn
from torchvision.ops.misc import FrozenBatchNorm2d


def freeze_batch_norm_2d(module, module_match={}, name=''):
    """
    Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
    itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
    returned. Otherwise, the module is walked recursively and submodules are converted in place.

    Args:
        module (torch.nn.Module): Any PyTorch module.
        module_match (dict): Dictionary of full module names to freeze (all if empty)
        name (str): Full module name (prefix)

    Returns:
        torch.nn.Module: Resulting module

    Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
    """
    res = module
    is_match = True
    if module_match:
        is_match = name in module_match
    if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
        res = FrozenBatchNorm2d(module.num_features)
        res.num_features = module.num_features
        res.affine = module.affine
        if module.affine:
            res.weight.data = module.weight.data.clone().detach()
            res.bias.data = module.bias.data.clone().detach()
        res.running_mean.data = module.running_mean.data
        res.running_var.data = module.running_var.data
        res.eps = module.eps
    else:
        for child_name, child in module.named_children():
            full_child_name = '.'.join([name, child_name]) if name else child_name
            new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
            if new_child is not child:
                res.add_module(child_name, new_child)
    return res


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = lambda n, x: _ntuple(n)(x)

# Replaces all linear layers with linear_replacement
# TODO: add int8 support for other linear layers including attn and convnets
def replace_linear(model, linear_replacement, include_modules=['c_fc', 'c_proj'], copy_weights=True):
    for name, module in model.named_children():
        if len(list(module.children())) > 0:
            replace_linear(module, linear_replacement, include_modules, copy_weights)

        if isinstance(module, torch.nn.Linear) and name in include_modules:
            old_module = model._modules[name]
            model._modules[name] = linear_replacement(
                module.in_features,
                module.out_features,
                module.bias is not None,
            )
            if copy_weights:
                model._modules[name].weight.data.copy_(old_module.weight.data)
                if model._modules[name].bias is not None:
                    model._modules[name].bias.data.copy_(old_module.bias)

    return model

def convert_int8_model_to_inference_mode(model):
    for m in model.modules():
        if hasattr(m, 'prepare_for_eval'):
            int8_original_dtype = m.weight.dtype
            m.prepare_for_eval()
            m.int8_original_dtype = int8_original_dtype
            

def accuracy(output, target, topk=(1,)):
    """
    Compute top-k accuracy

    output: torch.Tensor
        shape (N, C) where N is the number of examples, C the number of classes.
        these are the logits.
    
    target: torch.Tensor
        shape (N,) where N is the number of examples. Groundtruth class id of each example.
    
    topk: tuple
        which topk to compute, e.g., topk=(1,5) will compute top-1 and top-5 accuracies
    
    Returns
    -------
    
    list of top-k accuracies in the same order as `topk`
    """
    pred = output.topk(max(topk), 1, True, True)[1].t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))
    n = len(target)
    return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) / n for k in topk]