File size: 7,608 Bytes
c64fb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import torch

from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
    process_images,
    tokenizer_image_token,
    get_model_name_from_path,
    KeywordsStoppingCriteria,
)
from llava.transformers.generation.stopping_criteria import MaxNewTokensCriteria

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
import re

def image_parser(args):
    out = args.image_file.split(args.sep)
    return out

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def load_images(image_files):
    out = []
    for image_file in image_files:
        image = load_image(image_file)
        out.append(image)
    return out

def get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, query, image):
    sep = ","
    temperature = 0
    top_p = None
    num_beams = 1
    max_new_tokens = 1024
    conv_mode = None
    
    disable_torch_init()

    tokenizer, model, image_processor, context_len = tokenizer, model, image_processor, context_len

    hl = hl

    hl.reinit()

    qs = query
    image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
    if IMAGE_PLACEHOLDER in qs:
        if model.config.mm_use_im_start_end:
            qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
        else:
            qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
    else:
        if model.config.mm_use_im_start_end:
            qs = image_token_se + "\n" + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    if "llama-2" in model_name.lower():
        conv_mode = "llava_llama_2"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt"
    else:
        conv_mode = "llava_v0"

    if conv_mode is not None and conv_mode != conv_mode:
        print(
            "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
                conv_mode, conv_mode, conv_mode
            )
        )
    else:
        conv_mode = conv_mode

    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    images = [image]
    images = [image.convert('RGB') if image.mode != 'RGB' else image for image in images]
        
    images_tensor = process_images(
        images,
        image_processor,
        model.config
    ).to(model.device, dtype=torch.float16)

    input_ids = (
        tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
        .unsqueeze(0)
        .to(model.device)
    )

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = [
        KeywordsStoppingCriteria(keywords, tokenizer, input_ids),
        MaxNewTokensCriteria(input_ids.shape[1], max_new_tokens)
    ]

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=images_tensor,
            do_sample=True if temperature > 0 else False,
            temperature=temperature,
            top_p=top_p,
            num_beams=num_beams,
            # max_new_tokens=max_new_tokens,
            use_cache=True,
            stopping_criteria=stopping_criteria,
        )

    attention_output = hl.finalize()
    attention_output = attention_output.view(attention_output.shape[0],24,24)
    attention_output = attention_output.detach()

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(
            f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
        )

    # outputs = tokenizer.batch_decode(
    #     output_ids[:, input_token_len:].cpu(), skip_special_tokens=True
    # )[0]
    # outputs = outputs.strip()
    # if outputs.endswith(stop_str):
    #     outputs = outputs[: -len(stop_str)]
    # outputs = outputs.strip()
    output = tokenizer.decode(output_ids[:, input_token_len:].cpu()[0])

    token_mapping = get_token_mapping(tokenizer, output, output_ids[:, input_token_len:].cpu()[0])

    return output, {"llava_attentions":attention_output.detach(), "llava_token_mapping":token_mapping}

def clean_text(text):
    cleaned_text = re.sub(r'^[^a-zA-Z0-9]+|[^a-zA-Z0-9]+$', '', text)
    return cleaned_text

def get_token_mapping(tokenizer, outputs, output_ids):
    tokens = tokenizer.tokenize(outputs)[1:]
    assert len(tokens) == len(output_ids) 
    current_position = 0
    offsets = []

    for token in tokens:
        cleaned_token = clean_text(token)
        try:
            token_start = outputs.find(cleaned_token, current_position)
        except:
            print(outputs, cleaned_token)
            continue
        token_end = token_start + len(cleaned_token)
        offsets.append((token_start, token_end))
        current_position = token_end

    return offsets

def from_preanswer_to_mask(highlight_text, query, cache_dict):
    if highlight_text.strip() == query.strip() or highlight_text.strip() == "":
        token_start_index = 0
        token_end_index = len(cache_dict["llava_token_mapping"]) - 1
    else:
        text_start_index = query.find(highlight_text)
        text_end_index = text_start_index + len(highlight_text)

        for token_index, (token_text_mapping_st, token_text_mapping_end) in enumerate(cache_dict["llava_token_mapping"]):
            if token_text_mapping_st <= text_start_index:
                token_start_index = token_index
            if token_text_mapping_end >= text_end_index:
                token_end_index = token_index
                break
    
    attentions = cache_dict["llava_attentions"]
    selected_attentions = attentions[token_start_index:token_end_index+1]
    mask = selected_attentions.mean(dim=0)
    return mask

def get_model(model_path = "llava-v1.5-7b", device = "cuda:0"):
    model_path = f"liuhaotian/{model_path}"
    model_path = model_path
    model_base = None
    model_name = get_model_name_from_path(model_path)

    tokenizer, model, image_processor, context_len = load_pretrained_model(
        model_path=model_path,
        model_base=model_base,
        model_name=model_name,
        device= device,
        # load_4bit = True,
    )
    return tokenizer, model, image_processor, context_len, model_name

if __name__ == "__main__":
    prompt = "What are the things I should be cautious about when I visit here?"
    image_file = "https://llava-vl.github.io/static/images/view.jpg"
    image = Image.open(BytesIO(requests.get(image_file).content)).convert("RGB")

    tokenizer, model, image_processor, context_len, model_name = get_model()
    
    from .hook import hook_logger
    hl = hook_logger(model, model.device, layer_index = 20)
    output, cache_dict = get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, prompt, image)

    mask = from_preanswer_to_mask(output[10:20], output, cache_dict)