Spaces:
Running
Running
File size: 7,608 Bytes
c64fb9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import argparse
import torch
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria,
)
from llava.transformers.generation.stopping_criteria import MaxNewTokensCriteria
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
import re
def image_parser(args):
out = args.image_file.split(args.sep)
return out
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def load_images(image_files):
out = []
for image_file in image_files:
image = load_image(image_file)
out.append(image)
return out
def get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, query, image):
sep = ","
temperature = 0
top_p = None
num_beams = 1
max_new_tokens = 1024
conv_mode = None
disable_torch_init()
tokenizer, model, image_processor, context_len = tokenizer, model, image_processor, context_len
hl = hl
hl.reinit()
qs = query
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
if model.config.mm_use_im_start_end:
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
else:
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
if model.config.mm_use_im_start_end:
qs = image_token_se + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if conv_mode is not None and conv_mode != conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, conv_mode, conv_mode
)
)
else:
conv_mode = conv_mode
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
images = [image]
images = [image.convert('RGB') if image.mode != 'RGB' else image for image in images]
images_tensor = process_images(
images,
image_processor,
model.config
).to(model.device, dtype=torch.float16)
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(model.device)
)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = [
KeywordsStoppingCriteria(keywords, tokenizer, input_ids),
MaxNewTokensCriteria(input_ids.shape[1], max_new_tokens)
]
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
# max_new_tokens=max_new_tokens,
use_cache=True,
stopping_criteria=stopping_criteria,
)
attention_output = hl.finalize()
attention_output = attention_output.view(attention_output.shape[0],24,24)
attention_output = attention_output.detach()
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
)
# outputs = tokenizer.batch_decode(
# output_ids[:, input_token_len:].cpu(), skip_special_tokens=True
# )[0]
# outputs = outputs.strip()
# if outputs.endswith(stop_str):
# outputs = outputs[: -len(stop_str)]
# outputs = outputs.strip()
output = tokenizer.decode(output_ids[:, input_token_len:].cpu()[0])
token_mapping = get_token_mapping(tokenizer, output, output_ids[:, input_token_len:].cpu()[0])
return output, {"llava_attentions":attention_output.detach(), "llava_token_mapping":token_mapping}
def clean_text(text):
cleaned_text = re.sub(r'^[^a-zA-Z0-9]+|[^a-zA-Z0-9]+$', '', text)
return cleaned_text
def get_token_mapping(tokenizer, outputs, output_ids):
tokens = tokenizer.tokenize(outputs)[1:]
assert len(tokens) == len(output_ids)
current_position = 0
offsets = []
for token in tokens:
cleaned_token = clean_text(token)
try:
token_start = outputs.find(cleaned_token, current_position)
except:
print(outputs, cleaned_token)
continue
token_end = token_start + len(cleaned_token)
offsets.append((token_start, token_end))
current_position = token_end
return offsets
def from_preanswer_to_mask(highlight_text, query, cache_dict):
if highlight_text.strip() == query.strip() or highlight_text.strip() == "":
token_start_index = 0
token_end_index = len(cache_dict["llava_token_mapping"]) - 1
else:
text_start_index = query.find(highlight_text)
text_end_index = text_start_index + len(highlight_text)
for token_index, (token_text_mapping_st, token_text_mapping_end) in enumerate(cache_dict["llava_token_mapping"]):
if token_text_mapping_st <= text_start_index:
token_start_index = token_index
if token_text_mapping_end >= text_end_index:
token_end_index = token_index
break
attentions = cache_dict["llava_attentions"]
selected_attentions = attentions[token_start_index:token_end_index+1]
mask = selected_attentions.mean(dim=0)
return mask
def get_model(model_path = "llava-v1.5-7b", device = "cuda:0"):
model_path = f"liuhaotian/{model_path}"
model_path = model_path
model_base = None
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=model_base,
model_name=model_name,
device= device,
# load_4bit = True,
)
return tokenizer, model, image_processor, context_len, model_name
if __name__ == "__main__":
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
image = Image.open(BytesIO(requests.get(image_file).content)).convert("RGB")
tokenizer, model, image_processor, context_len, model_name = get_model()
from .hook import hook_logger
hl = hook_logger(model, model.device, layer_index = 20)
output, cache_dict = get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, prompt, image)
mask = from_preanswer_to_mask(output[10:20], output, cache_dict) |