yu-rp
init
c64fb9f
raw
history blame
4.49 kB
import time
import numpy as np
import torch
from PIL import Image
import glob
import sys
import argparse
import datetime
import json
from pathlib import Path
class MaskHookLogger(object):
def __init__(self, model, device):
self.current_layer = 0
self.device = device
self.attentions = []
self.mlps = []
self.post_ln_std = None
self.post_ln_mean = None
self.model = model
@torch.no_grad()
def compute_attentions(self, ret):
if self.current_layer == self.layer_index:
bias_term = self.model.visual.transformer.resblocks[self.current_layer].attn.out_proj.bias
return_value = ret[:, 0]
return_value = return_value + bias_term[np.newaxis, np.newaxis] / (return_value.shape[1])# [b, n, d]
self.attentions.append(return_value.detach())
self.current_layer += 1
return ret
@torch.no_grad()
def compute_mlps(self, ret):
if self.current_layer == self.layer_index + 1:
self.mlps.append(ret[:, 1:].detach()) # [b, n, d]
return ret
@torch.no_grad()
def log_post_ln_mean(self, ret):
self.post_ln_mean = ret.detach() # [b, 1]
return ret
@torch.no_grad()
def log_post_ln_std(self, ret):
self.post_ln_std = ret.detach() # [b, 1]
return ret
def _normalize_mlps(self):
len_intermediates = self.current_layer * 2 - 1
# This is just the normalization layer:
mean_centered = (self.mlps -
self.post_ln_mean[:, :, np.newaxis, np.newaxis] / len_intermediates)
weighted_mean_centered = self.model.visual.ln_post.weight.detach() * mean_centered
weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[:, :, np.newaxis, np.newaxis]
bias_term = self.model.visual.ln_post.bias.detach() / len_intermediates
post_ln = weighted_mean_by_std + bias_term
return post_ln @ self.model.visual.proj.detach()
def _normalize_attentions(self):
len_intermediates = self.current_layer * 2 - 1 # 2*l + 1
normalization_term = self.attentions.shape[2] * 1 # n * h, h=1
# This is just the normalization layer:
mean_centered = (self.attentions -
self.post_ln_mean[:, :, np.newaxis, np.newaxis] /
(len_intermediates * normalization_term))
weighted_mean_centered = self.model.visual.ln_post.weight.detach() * mean_centered
weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[:, :, np.newaxis, np.newaxis]
bias_term = self.model.visual.ln_post.bias.detach() / (len_intermediates * normalization_term)
post_ln = weighted_mean_by_std + bias_term
return post_ln @ self.model.visual.proj.detach()
@torch.no_grad()
def finalize(self, representation):
"""We calculate the post-ln scaling, project it and normalize by the last norm."""
self.attentions = torch.stack(self.attentions, axis=1) # [b, 1, n, d]
self.mlps = torch.stack(self.mlps, axis=1) # [b, 1, n, d]
projected_attentions = self._normalize_attentions()
projected_mlps = self._normalize_mlps()
norm = representation.norm(dim=-1).detach()
return (projected_attentions / norm[:, np.newaxis, np.newaxis, np.newaxis],
projected_mlps / norm[:, np.newaxis, np.newaxis, np.newaxis])
def reinit(self):
self.current_layer = 0
self.attentions = []
self.mlps = []
self.post_ln_mean = None
self.post_ln_std = None
torch.cuda.empty_cache()
def hook_prs_logger(model, device, layer_index = 23):
"""Hooks a projected residual stream logger to the model."""
prs = MaskHookLogger(model, device)
model.hook_manager.register('visual.transformer.resblocks.*.attn.out.post',
prs.compute_attentions)
model.hook_manager.register('visual.transformer.resblocks.*.post',
prs.compute_mlps)
model.hook_manager.register('visual.ln_pre_post',
prs.compute_mlps)
model.hook_manager.register('visual.ln_post.mean',
prs.log_post_ln_mean)
model.hook_manager.register('visual.ln_post.sqrt_var',
prs.log_post_ln_std)
prs.layer_index = layer_index
return prs