apiprompting / API_CLIP /clip_prs /utils /segmentation_utils.py
yu-rp
init
c64fb9f
raw
history blame
23.7 kB
import torch
import matplotlib.cm
import skimage.io
import skimage.feature
import skimage.filters
import numpy as np
import os
from collections import OrderedDict
import glob
from sklearn.metrics import f1_score, average_precision_score
from sklearn.metrics import precision_recall_curve, roc_curve
SMOOTH = 1e-6
def get_iou(outputs: torch.Tensor, labels: torch.Tensor):
# You can comment out this line if you are passing tensors of equal shape
# But if you are passing output from UNet or something it will most probably
# be with the BATCH x 1 x H x W shape
outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W
intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0
union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0
iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0
return iou.cpu().numpy()
def get_f1_scores(predict, target, ignore_index=-1):
# Tensor process
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target.data.cpu().numpy().reshape(-1)
pb = predict[target != ignore_index].reshape(batch_size, -1)
tb = target[target != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(np.nan_to_num(f1_score(t, p)))
return total
def get_roc(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(roc_curve(t, p))
return total
def get_pr(predict, target, ignore_index=-1):
target_expand = target.unsqueeze(1).expand_as(predict)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = target.unsqueeze(1).clamp(min=0)
target_1hot = x.scatter_(1, t, 1)
batch_size = predict.shape[0]
predict = predict.data.cpu().numpy().reshape(-1)
target = target_1hot.data.cpu().numpy().reshape(-1)
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1)
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1)
total = []
for p, t in zip(pb, tb):
total.append(precision_recall_curve(t, p))
return total
def get_ap_scores(predict, target, ignore_index=-1):
total = []
for pred, tgt in zip(predict, target):
target_expand = tgt.unsqueeze(0).expand_as(pred)
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1)
# Tensor process
x = torch.zeros_like(target_expand)
t = tgt.unsqueeze(0).clamp(min=0).long()
target_1hot = x.scatter_(0, t, 1)
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = target_1hot.data.cpu().numpy().reshape(-1)
p = predict_flat[target_expand_numpy != ignore_index]
t = target_flat[target_expand_numpy != ignore_index]
total.append(np.nan_to_num(average_precision_score(t, p)))
return total
def get_ap_multiclass(predict, target):
total = []
for pred, tgt in zip(predict, target):
predict_flat = pred.data.cpu().numpy().reshape(-1)
target_flat = tgt.data.cpu().numpy().reshape(-1)
total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat)))
return total
def batch_precision_recall(predict, target, thr=0.5):
"""Batch Precision Recall
Args:
predict: input 4D tensor
target: label 4D tensor
"""
# _, predict = torch.max(predict, 1)
predict = predict > thr
predict = predict.data.cpu().numpy() + 1
target = target.data.cpu().numpy() + 1
tp = np.sum(((predict == 2) * (target == 2)) * (target > 0))
fp = np.sum(((predict == 2) * (target == 1)) * (target > 0))
fn = np.sum(((predict == 1) * (target == 2)) * (target > 0))
precision = float(np.nan_to_num(tp / (tp + fp)))
recall = float(np.nan_to_num(tp / (tp + fn)))
return precision, recall
def batch_pix_accuracy(predict, target):
"""Batch Pixel Accuracy
Args:
predict: input 3D tensor
target: label 3D tensor
"""
# for thr in np.linspace(0, 1, slices):
_, predict = torch.max(predict, 0)
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
pixel_labeled = np.sum(target > 0)
pixel_correct = np.sum((predict == target) * (target > 0))
assert pixel_correct <= pixel_labeled, \
"Correct area should be smaller than Labeled"
return pixel_correct, pixel_labeled
def batch_intersection_union(predict, target, nclass):
"""Batch Intersection of Union
Args:
predict: input 3D tensor
target: label 3D tensor
nclass: number of categories (int)
"""
_, predict = torch.max(predict, 0)
mini = 1
maxi = nclass
nbins = nclass
predict = predict.cpu().numpy() + 1
target = target.cpu().numpy() + 1
predict = predict * (target > 0).astype(predict.dtype)
intersection = predict * (predict == target)
# areas of intersection and union
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
area_union = area_pred + area_lab - area_inter
assert (area_inter <= area_union).all(), \
"Intersection area should be smaller than Union area"
return area_inter, area_union
def pixel_accuracy(im_pred, im_lab):
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
pixel_labeled = np.sum(im_lab > 0)
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
return pixel_correct, pixel_labeled
def intersection_and_union(im_pred, im_lab, num_class):
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
im_pred = im_pred * (im_lab > 0)
# Compute area intersection:
intersection = im_pred * (im_pred == im_lab)
area_inter, _ = np.histogram(intersection, bins=num_class - 1,
range=(1, num_class - 1))
# Compute area union:
area_pred, _ = np.histogram(im_pred, bins=num_class - 1,
range=(1, num_class - 1))
area_lab, _ = np.histogram(im_lab, bins=num_class - 1,
range=(1, num_class - 1))
area_union = area_pred + area_lab - area_inter
return area_inter, area_union
class Saver(object):
def __init__(self, args):
self.args = args
self.directory = os.path.join('run', args.train_dataset, args.model)
self.runs = sorted(glob.glob(os.path.join(self.directory, 'experiment_*')))
run_id = int(self.runs[-1].split('_')[-1]) + 1 if self.runs else 0
self.experiment_dir = os.path.join(self.directory, 'experiment_{}'.format(str(run_id)))
if not os.path.exists(self.experiment_dir):
os.makedirs(self.experiment_dir)
def save_checkpoint(self, state, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
filename = os.path.join(self.experiment_dir, filename)
torch.save(state, filename)
def save_experiment_config(self):
logfile = os.path.join(self.experiment_dir, 'parameters.txt')
log_file = open(logfile, 'w')
p = OrderedDict()
p['train_dataset'] = self.args.train_dataset
p['lr'] = self.args.lr
p['epoch'] = self.args.epochs
for key, val in p.items():
log_file.write(key + ':' + str(val) + '\n')
log_file.close()
class Metric(object):
"""Base class for all metrics.
From: https://github.com/pytorch/tnt/blob/master/torchnet/meter/meter.py
"""
def reset(self):
pass
def add(self):
pass
def value(self):
pass
class ConfusionMatrix(Metric):
"""Constructs a confusion matrix for a multi-class classification problems.
Does not support multi-label, multi-class problems.
Keyword arguments:
- num_classes (int): number of classes in the classification problem.
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
Modified from: https://github.com/pytorch/tnt/blob/master/torchnet/meter/confusionmeter.py
"""
def __init__(self, num_classes, normalized=False):
super().__init__()
self.conf = np.ndarray((num_classes, num_classes), dtype=np.int32)
self.normalized = normalized
self.num_classes = num_classes
self.reset()
def reset(self):
self.conf.fill(0)
def add(self, predicted, target):
"""Computes the confusion matrix
The shape of the confusion matrix is K x K, where K is the number
of classes.
Keyword arguments:
- predicted (Tensor or numpy.ndarray): Can be an N x K tensor/array of
predicted scores obtained from the model for N examples and K classes,
or an N-tensor/array of integer values between 0 and K-1.
- target (Tensor or numpy.ndarray): Can be an N x K tensor/array of
ground-truth classes for N examples and K classes, or an N-tensor/array
of integer values between 0 and K-1.
"""
# If target and/or predicted are tensors, convert them to numpy arrays
if torch.is_tensor(predicted):
predicted = predicted.cpu().numpy()
if torch.is_tensor(target):
target = target.cpu().numpy()
assert predicted.shape[0] == target.shape[0], \
'number of targets and predicted outputs do not match'
if np.ndim(predicted) != 1:
assert predicted.shape[1] == self.num_classes, \
'number of predictions does not match size of confusion matrix'
predicted = np.argmax(predicted, 1)
else:
assert (predicted.max() < self.num_classes) and (predicted.min() >= 0), \
'predicted values are not between 0 and k-1'
if np.ndim(target) != 1:
assert target.shape[1] == self.num_classes, \
'Onehot target does not match size of confusion matrix'
assert (target >= 0).all() and (target <= 1).all(), \
'in one-hot encoding, target values should be 0 or 1'
assert (target.sum(1) == 1).all(), \
'multi-label setting is not supported'
target = np.argmax(target, 1)
else:
assert (target.max() < self.num_classes) and (target.min() >= 0), \
'target values are not between 0 and k-1'
# hack for bincounting 2 arrays together
x = predicted + self.num_classes * target
bincount_2d = np.bincount(
x.astype(np.int32), minlength=self.num_classes**2)
assert bincount_2d.size == self.num_classes**2
conf = bincount_2d.reshape((self.num_classes, self.num_classes))
self.conf += conf
def value(self):
"""
Returns:
Confustion matrix of K rows and K columns, where rows corresponds
to ground-truth targets and columns corresponds to predicted
targets.
"""
if self.normalized:
conf = self.conf.astype(np.float32)
return conf / conf.sum(1).clip(min=1e-12)[:, None]
else:
return self.conf
def vec2im(V, shape=()):
'''
Transform an array V into a specified shape - or if no shape is given assume a square output format.
Parameters
----------
V : numpy.ndarray
an array either representing a matrix or vector to be reshaped into an two-dimensional image
shape : tuple or list
optional. containing the shape information for the output array if not given, the output is assumed to be square
Returns
-------
W : numpy.ndarray
with W.shape = shape or W.shape = [np.sqrt(V.size)]*2
'''
if len(shape) < 2:
shape = [np.sqrt(V.size)] * 2
shape = map(int, shape)
return np.reshape(V, shape)
def enlarge_image(img, scaling=3):
'''
Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction.
Parameters
----------
img : numpy.ndarray
array of shape [H x W] OR [H x W x D]
scaling : int
positive integer value > 0
Returns
-------
out : numpy.ndarray
two-dimensional array of shape [scaling*H x scaling*W]
OR
three-dimensional array of shape [scaling*H x scaling*W x D]
depending on the dimensionality of the input
'''
if scaling < 1 or not isinstance(scaling, int):
print('scaling factor needs to be an int >= 1')
if len(img.shape) == 2:
H, W = img.shape
out = np.zeros((scaling * H, scaling * W))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling] = img[h, w]
elif len(img.shape) == 3:
H, W, D = img.shape
out = np.zeros((scaling * H, scaling * W, D))
for h in range(H):
fh = scaling * h
for w in range(W):
fw = scaling * w
out[fh:fh + scaling, fw:fw + scaling, :] = img[h, w, :]
return out
def repaint_corner_pixels(rgbimg, scaling=3):
'''
DEPRECATED/OBSOLETE.
Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups).
The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling.
Assumes those image ares will pretty much never show evidence.
Parameters
----------
rgbimg : numpy.ndarray
array of shape [H x W x 3]
scaling : int
positive integer value > 0
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3]
'''
# top left corner.
rgbimg[0:scaling, 0:scaling, :] = (rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling,
:]) / 3.0
# bottom right corner
rgbimg[-scaling:, -scaling:, :] = (rgbimg[-1, -1 - scaling, :] + rgbimg[-1 - scaling, -1, :] + rgbimg[-1 - scaling,
-1 - scaling,
:]) / 3.0
return rgbimg
def digit_to_rgb(X, scaling=3, shape=(), cmap='binary'):
'''
Takes as input an intensity array and produces a rgb image due to some color map
Parameters
----------
X : numpy.ndarray
intensity matrix as array of shape [M x N]
scaling : int
optional. positive integer value > 0
shape: tuple or list of its , length = 2
optional. if not given, X is reshaped to be square.
cmap : str
name of color map of choice. default is 'binary'
Returns
-------
image : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
image = enlarge_image(vec2im(X, shape), scaling) # enlarge
image = cmap(image.flatten())[..., 0:3].reshape([image.shape[0], image.shape[1], 3]) # colorize, reshape
return image
def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap='bwr', normalize=True):
'''
Takes as input an intensity array and produces a rgb image for the represented heatmap.
optionally draws the outline of another input on top of it.
Parameters
----------
R : numpy.ndarray
the heatmap to be visualized, shaped [M x N]
X : numpy.ndarray
optional. some input, usually the data point for which the heatmap R is for, which shall serve
as a template for a black outline to be drawn on top of the image
shaped [M x N]
scaling: int
factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness)
after reshaping it using shape.
shape: tuple or list, length = 2
optional. if not given, X is reshaped to be square.
sigma : double
optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines.
cmap : str
optional. color map of choice
normalize : bool
optional. whether to normalize the heatmap to [-1 1] prior to colorization or not.
Returns
-------
rgbimg : numpy.ndarray
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N
'''
# create color map object from name string
cmap = eval('matplotlib.cm.{}'.format(cmap))
if normalize:
R = R / np.max(np.abs(R)) # normalize to [-1,1] wrt to max relevance magnitude
R = (R + 1.) / 2. # shift/normalize to [0,1] for color mapping
R = enlarge_image(R, scaling)
rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3])
# rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs
if not X is None: # compute the outline of the input
# X = enlarge_image(vec2im(X,shape), scaling)
xdims = X.shape
Rdims = R.shape
return rgb
def save_image(rgb_images, path, gap=2):
'''
Takes as input a list of rgb images, places them next to each other with a gap and writes out the result.
Parameters
----------
rgb_images : list , tuple, collection. such stuff
each item in the collection is expected to be an rgb image of dimensions [H x _ x 3]
where the width is variable
path : str
the output path of the assembled image
gap : int
optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images
Returns
-------
image : numpy.ndarray
the assembled image as written out to path
'''
sz = []
image = []
for i in range(len(rgb_images)):
if not sz:
sz = rgb_images[i].shape
image = rgb_images[i]
gap = np.zeros((sz[0], gap, sz[2]))
continue
if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]:
print('image', i, 'differs in size. unable to perform horizontal alignment')
print('expected: Hx_xD = {0}x_x{1}'.format(sz[0], sz[1]))
print('got : Hx_xD = {0}x_x{1}'.format(rgb_images[i].shape[0], rgb_images[i].shape[1]))
print('skipping image\n')
else:
image = np.hstack((image, gap, rgb_images[i]))
image *= 255
image = image.astype(np.uint8)
print('saving image to ', path)
skimage.io.imsave(path, image)
return image
class IoU(Metric):
"""Computes the intersection over union (IoU) per class and corresponding
mean (mIoU).
Intersection over union (IoU) is a common evaluation metric for semantic
segmentation. The predictions are first accumulated in a confusion matrix
and the IoU is computed from it as follows:
IoU = true_positive / (true_positive + false_positive + false_negative).
Keyword arguments:
- num_classes (int): number of classes in the classification problem
- normalized (boolean, optional): Determines whether or not the confusion
matrix is normalized or not. Default: False.
- ignore_index (int or iterable, optional): Index of the classes to ignore
when computing the IoU. Can be an int, or any iterable of ints.
"""
def __init__(self, num_classes, normalized=False, ignore_index=None):
super().__init__()
self.conf_metric = ConfusionMatrix(num_classes, normalized)
if ignore_index is None:
self.ignore_index = None
elif isinstance(ignore_index, int):
self.ignore_index = (ignore_index,)
else:
try:
self.ignore_index = tuple(ignore_index)
except TypeError:
raise ValueError("'ignore_index' must be an int or iterable")
def reset(self):
self.conf_metric.reset()
def add(self, predicted, target):
"""Adds the predicted and target pair to the IoU metric.
Keyword arguments:
- predicted (Tensor): Can be a (N, K, H, W) tensor of
predicted scores obtained from the model for N examples and K classes,
or (N, H, W) tensor of integer values between 0 and K-1.
- target (Tensor): Can be a (N, K, H, W) tensor of
target scores for N examples and K classes, or (N, H, W) tensor of
integer values between 0 and K-1.
"""
# Dimensions check
assert predicted.size(0) == target.size(0), \
'number of targets and predicted outputs do not match'
assert predicted.dim() == 3 or predicted.dim() == 4, \
"predictions must be of dimension (N, H, W) or (N, K, H, W)"
assert target.dim() == 3 or target.dim() == 4, \
"targets must be of dimension (N, H, W) or (N, K, H, W)"
# If the tensor is in categorical format convert it to integer format
if predicted.dim() == 4:
_, predicted = predicted.max(1)
if target.dim() == 4:
_, target = target.max(1)
self.conf_metric.add(predicted.view(-1), target.view(-1))
def value(self):
"""Computes the IoU and mean IoU.
The mean computation ignores NaN elements of the IoU array.
Returns:
Tuple: (IoU, mIoU). The first output is the per class IoU,
for K classes it's numpy.ndarray with K elements. The second output,
is the mean IoU.
"""
conf_matrix = self.conf_metric.value()
if self.ignore_index is not None:
for index in self.ignore_index:
conf_matrix[:, self.ignore_index] = 0
conf_matrix[self.ignore_index, :] = 0
true_positive = np.diag(conf_matrix)
false_positive = np.sum(conf_matrix, 0) - true_positive
false_negative = np.sum(conf_matrix, 1) - true_positive
# Just in case we get a division by 0, ignore/hide the error
with np.errstate(divide='ignore', invalid='ignore'):
iou = true_positive / (true_positive + false_positive + false_negative)
return iou, np.nanmean(iou)