Spaces:
Running
Running
import torch | |
import matplotlib.cm | |
import skimage.io | |
import skimage.feature | |
import skimage.filters | |
import numpy as np | |
import os | |
from collections import OrderedDict | |
import glob | |
from sklearn.metrics import f1_score, average_precision_score | |
from sklearn.metrics import precision_recall_curve, roc_curve | |
SMOOTH = 1e-6 | |
def get_iou(outputs: torch.Tensor, labels: torch.Tensor): | |
# You can comment out this line if you are passing tensors of equal shape | |
# But if you are passing output from UNet or something it will most probably | |
# be with the BATCH x 1 x H x W shape | |
outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0 | |
union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0 | |
iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0 | |
return iou.cpu().numpy() | |
def get_f1_scores(predict, target, ignore_index=-1): | |
# Tensor process | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target.data.cpu().numpy().reshape(-1) | |
pb = predict[target != ignore_index].reshape(batch_size, -1) | |
tb = target[target != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(np.nan_to_num(f1_score(t, p))) | |
return total | |
def get_roc(predict, target, ignore_index=-1): | |
target_expand = target.unsqueeze(1).expand_as(predict) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = target.unsqueeze(1).clamp(min=0) | |
target_1hot = x.scatter_(1, t, 1) | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target_1hot.data.cpu().numpy().reshape(-1) | |
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(roc_curve(t, p)) | |
return total | |
def get_pr(predict, target, ignore_index=-1): | |
target_expand = target.unsqueeze(1).expand_as(predict) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = target.unsqueeze(1).clamp(min=0) | |
target_1hot = x.scatter_(1, t, 1) | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target_1hot.data.cpu().numpy().reshape(-1) | |
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(precision_recall_curve(t, p)) | |
return total | |
def get_ap_scores(predict, target, ignore_index=-1): | |
total = [] | |
for pred, tgt in zip(predict, target): | |
target_expand = tgt.unsqueeze(0).expand_as(pred) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = tgt.unsqueeze(0).clamp(min=0).long() | |
target_1hot = x.scatter_(0, t, 1) | |
predict_flat = pred.data.cpu().numpy().reshape(-1) | |
target_flat = target_1hot.data.cpu().numpy().reshape(-1) | |
p = predict_flat[target_expand_numpy != ignore_index] | |
t = target_flat[target_expand_numpy != ignore_index] | |
total.append(np.nan_to_num(average_precision_score(t, p))) | |
return total | |
def get_ap_multiclass(predict, target): | |
total = [] | |
for pred, tgt in zip(predict, target): | |
predict_flat = pred.data.cpu().numpy().reshape(-1) | |
target_flat = tgt.data.cpu().numpy().reshape(-1) | |
total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat))) | |
return total | |
def batch_precision_recall(predict, target, thr=0.5): | |
"""Batch Precision Recall | |
Args: | |
predict: input 4D tensor | |
target: label 4D tensor | |
""" | |
# _, predict = torch.max(predict, 1) | |
predict = predict > thr | |
predict = predict.data.cpu().numpy() + 1 | |
target = target.data.cpu().numpy() + 1 | |
tp = np.sum(((predict == 2) * (target == 2)) * (target > 0)) | |
fp = np.sum(((predict == 2) * (target == 1)) * (target > 0)) | |
fn = np.sum(((predict == 1) * (target == 2)) * (target > 0)) | |
precision = float(np.nan_to_num(tp / (tp + fp))) | |
recall = float(np.nan_to_num(tp / (tp + fn))) | |
return precision, recall | |
def batch_pix_accuracy(predict, target): | |
"""Batch Pixel Accuracy | |
Args: | |
predict: input 3D tensor | |
target: label 3D tensor | |
""" | |
# for thr in np.linspace(0, 1, slices): | |
_, predict = torch.max(predict, 0) | |
predict = predict.cpu().numpy() + 1 | |
target = target.cpu().numpy() + 1 | |
pixel_labeled = np.sum(target > 0) | |
pixel_correct = np.sum((predict == target) * (target > 0)) | |
assert pixel_correct <= pixel_labeled, \ | |
"Correct area should be smaller than Labeled" | |
return pixel_correct, pixel_labeled | |
def batch_intersection_union(predict, target, nclass): | |
"""Batch Intersection of Union | |
Args: | |
predict: input 3D tensor | |
target: label 3D tensor | |
nclass: number of categories (int) | |
""" | |
_, predict = torch.max(predict, 0) | |
mini = 1 | |
maxi = nclass | |
nbins = nclass | |
predict = predict.cpu().numpy() + 1 | |
target = target.cpu().numpy() + 1 | |
predict = predict * (target > 0).astype(predict.dtype) | |
intersection = predict * (predict == target) | |
# areas of intersection and union | |
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) | |
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) | |
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) | |
area_union = area_pred + area_lab - area_inter | |
assert (area_inter <= area_union).all(), \ | |
"Intersection area should be smaller than Union area" | |
return area_inter, area_union | |
def pixel_accuracy(im_pred, im_lab): | |
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py | |
im_pred = np.asarray(im_pred) | |
im_lab = np.asarray(im_lab) | |
# Remove classes from unlabeled pixels in gt image. | |
# We should not penalize detections in unlabeled portions of the image. | |
pixel_labeled = np.sum(im_lab > 0) | |
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0)) | |
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled | |
return pixel_correct, pixel_labeled | |
def intersection_and_union(im_pred, im_lab, num_class): | |
im_pred = np.asarray(im_pred) | |
im_lab = np.asarray(im_lab) | |
# Remove classes from unlabeled pixels in gt image. | |
im_pred = im_pred * (im_lab > 0) | |
# Compute area intersection: | |
intersection = im_pred * (im_pred == im_lab) | |
area_inter, _ = np.histogram(intersection, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
# Compute area union: | |
area_pred, _ = np.histogram(im_pred, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
area_lab, _ = np.histogram(im_lab, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
area_union = area_pred + area_lab - area_inter | |
return area_inter, area_union | |
class Saver(object): | |
def __init__(self, args): | |
self.args = args | |
self.directory = os.path.join('run', args.train_dataset, args.model) | |
self.runs = sorted(glob.glob(os.path.join(self.directory, 'experiment_*'))) | |
run_id = int(self.runs[-1].split('_')[-1]) + 1 if self.runs else 0 | |
self.experiment_dir = os.path.join(self.directory, 'experiment_{}'.format(str(run_id))) | |
if not os.path.exists(self.experiment_dir): | |
os.makedirs(self.experiment_dir) | |
def save_checkpoint(self, state, filename='checkpoint.pth.tar'): | |
"""Saves checkpoint to disk""" | |
filename = os.path.join(self.experiment_dir, filename) | |
torch.save(state, filename) | |
def save_experiment_config(self): | |
logfile = os.path.join(self.experiment_dir, 'parameters.txt') | |
log_file = open(logfile, 'w') | |
p = OrderedDict() | |
p['train_dataset'] = self.args.train_dataset | |
p['lr'] = self.args.lr | |
p['epoch'] = self.args.epochs | |
for key, val in p.items(): | |
log_file.write(key + ':' + str(val) + '\n') | |
log_file.close() | |
class Metric(object): | |
"""Base class for all metrics. | |
From: https://github.com/pytorch/tnt/blob/master/torchnet/meter/meter.py | |
""" | |
def reset(self): | |
pass | |
def add(self): | |
pass | |
def value(self): | |
pass | |
class ConfusionMatrix(Metric): | |
"""Constructs a confusion matrix for a multi-class classification problems. | |
Does not support multi-label, multi-class problems. | |
Keyword arguments: | |
- num_classes (int): number of classes in the classification problem. | |
- normalized (boolean, optional): Determines whether or not the confusion | |
matrix is normalized or not. Default: False. | |
Modified from: https://github.com/pytorch/tnt/blob/master/torchnet/meter/confusionmeter.py | |
""" | |
def __init__(self, num_classes, normalized=False): | |
super().__init__() | |
self.conf = np.ndarray((num_classes, num_classes), dtype=np.int32) | |
self.normalized = normalized | |
self.num_classes = num_classes | |
self.reset() | |
def reset(self): | |
self.conf.fill(0) | |
def add(self, predicted, target): | |
"""Computes the confusion matrix | |
The shape of the confusion matrix is K x K, where K is the number | |
of classes. | |
Keyword arguments: | |
- predicted (Tensor or numpy.ndarray): Can be an N x K tensor/array of | |
predicted scores obtained from the model for N examples and K classes, | |
or an N-tensor/array of integer values between 0 and K-1. | |
- target (Tensor or numpy.ndarray): Can be an N x K tensor/array of | |
ground-truth classes for N examples and K classes, or an N-tensor/array | |
of integer values between 0 and K-1. | |
""" | |
# If target and/or predicted are tensors, convert them to numpy arrays | |
if torch.is_tensor(predicted): | |
predicted = predicted.cpu().numpy() | |
if torch.is_tensor(target): | |
target = target.cpu().numpy() | |
assert predicted.shape[0] == target.shape[0], \ | |
'number of targets and predicted outputs do not match' | |
if np.ndim(predicted) != 1: | |
assert predicted.shape[1] == self.num_classes, \ | |
'number of predictions does not match size of confusion matrix' | |
predicted = np.argmax(predicted, 1) | |
else: | |
assert (predicted.max() < self.num_classes) and (predicted.min() >= 0), \ | |
'predicted values are not between 0 and k-1' | |
if np.ndim(target) != 1: | |
assert target.shape[1] == self.num_classes, \ | |
'Onehot target does not match size of confusion matrix' | |
assert (target >= 0).all() and (target <= 1).all(), \ | |
'in one-hot encoding, target values should be 0 or 1' | |
assert (target.sum(1) == 1).all(), \ | |
'multi-label setting is not supported' | |
target = np.argmax(target, 1) | |
else: | |
assert (target.max() < self.num_classes) and (target.min() >= 0), \ | |
'target values are not between 0 and k-1' | |
# hack for bincounting 2 arrays together | |
x = predicted + self.num_classes * target | |
bincount_2d = np.bincount( | |
x.astype(np.int32), minlength=self.num_classes**2) | |
assert bincount_2d.size == self.num_classes**2 | |
conf = bincount_2d.reshape((self.num_classes, self.num_classes)) | |
self.conf += conf | |
def value(self): | |
""" | |
Returns: | |
Confustion matrix of K rows and K columns, where rows corresponds | |
to ground-truth targets and columns corresponds to predicted | |
targets. | |
""" | |
if self.normalized: | |
conf = self.conf.astype(np.float32) | |
return conf / conf.sum(1).clip(min=1e-12)[:, None] | |
else: | |
return self.conf | |
def vec2im(V, shape=()): | |
''' | |
Transform an array V into a specified shape - or if no shape is given assume a square output format. | |
Parameters | |
---------- | |
V : numpy.ndarray | |
an array either representing a matrix or vector to be reshaped into an two-dimensional image | |
shape : tuple or list | |
optional. containing the shape information for the output array if not given, the output is assumed to be square | |
Returns | |
------- | |
W : numpy.ndarray | |
with W.shape = shape or W.shape = [np.sqrt(V.size)]*2 | |
''' | |
if len(shape) < 2: | |
shape = [np.sqrt(V.size)] * 2 | |
shape = map(int, shape) | |
return np.reshape(V, shape) | |
def enlarge_image(img, scaling=3): | |
''' | |
Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction. | |
Parameters | |
---------- | |
img : numpy.ndarray | |
array of shape [H x W] OR [H x W x D] | |
scaling : int | |
positive integer value > 0 | |
Returns | |
------- | |
out : numpy.ndarray | |
two-dimensional array of shape [scaling*H x scaling*W] | |
OR | |
three-dimensional array of shape [scaling*H x scaling*W x D] | |
depending on the dimensionality of the input | |
''' | |
if scaling < 1 or not isinstance(scaling, int): | |
print('scaling factor needs to be an int >= 1') | |
if len(img.shape) == 2: | |
H, W = img.shape | |
out = np.zeros((scaling * H, scaling * W)) | |
for h in range(H): | |
fh = scaling * h | |
for w in range(W): | |
fw = scaling * w | |
out[fh:fh + scaling, fw:fw + scaling] = img[h, w] | |
elif len(img.shape) == 3: | |
H, W, D = img.shape | |
out = np.zeros((scaling * H, scaling * W, D)) | |
for h in range(H): | |
fh = scaling * h | |
for w in range(W): | |
fw = scaling * w | |
out[fh:fh + scaling, fw:fw + scaling, :] = img[h, w, :] | |
return out | |
def repaint_corner_pixels(rgbimg, scaling=3): | |
''' | |
DEPRECATED/OBSOLETE. | |
Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups). | |
The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling. | |
Assumes those image ares will pretty much never show evidence. | |
Parameters | |
---------- | |
rgbimg : numpy.ndarray | |
array of shape [H x W x 3] | |
scaling : int | |
positive integer value > 0 | |
Returns | |
------- | |
rgbimg : numpy.ndarray | |
three-dimensional array of shape [scaling*H x scaling*W x 3] | |
''' | |
# top left corner. | |
rgbimg[0:scaling, 0:scaling, :] = (rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling, | |
:]) / 3.0 | |
# bottom right corner | |
rgbimg[-scaling:, -scaling:, :] = (rgbimg[-1, -1 - scaling, :] + rgbimg[-1 - scaling, -1, :] + rgbimg[-1 - scaling, | |
-1 - scaling, | |
:]) / 3.0 | |
return rgbimg | |
def digit_to_rgb(X, scaling=3, shape=(), cmap='binary'): | |
''' | |
Takes as input an intensity array and produces a rgb image due to some color map | |
Parameters | |
---------- | |
X : numpy.ndarray | |
intensity matrix as array of shape [M x N] | |
scaling : int | |
optional. positive integer value > 0 | |
shape: tuple or list of its , length = 2 | |
optional. if not given, X is reshaped to be square. | |
cmap : str | |
name of color map of choice. default is 'binary' | |
Returns | |
------- | |
image : numpy.ndarray | |
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N | |
''' | |
# create color map object from name string | |
cmap = eval('matplotlib.cm.{}'.format(cmap)) | |
image = enlarge_image(vec2im(X, shape), scaling) # enlarge | |
image = cmap(image.flatten())[..., 0:3].reshape([image.shape[0], image.shape[1], 3]) # colorize, reshape | |
return image | |
def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap='bwr', normalize=True): | |
''' | |
Takes as input an intensity array and produces a rgb image for the represented heatmap. | |
optionally draws the outline of another input on top of it. | |
Parameters | |
---------- | |
R : numpy.ndarray | |
the heatmap to be visualized, shaped [M x N] | |
X : numpy.ndarray | |
optional. some input, usually the data point for which the heatmap R is for, which shall serve | |
as a template for a black outline to be drawn on top of the image | |
shaped [M x N] | |
scaling: int | |
factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness) | |
after reshaping it using shape. | |
shape: tuple or list, length = 2 | |
optional. if not given, X is reshaped to be square. | |
sigma : double | |
optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines. | |
cmap : str | |
optional. color map of choice | |
normalize : bool | |
optional. whether to normalize the heatmap to [-1 1] prior to colorization or not. | |
Returns | |
------- | |
rgbimg : numpy.ndarray | |
three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N | |
''' | |
# create color map object from name string | |
cmap = eval('matplotlib.cm.{}'.format(cmap)) | |
if normalize: | |
R = R / np.max(np.abs(R)) # normalize to [-1,1] wrt to max relevance magnitude | |
R = (R + 1.) / 2. # shift/normalize to [0,1] for color mapping | |
R = enlarge_image(R, scaling) | |
rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3]) | |
# rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs | |
if not X is None: # compute the outline of the input | |
# X = enlarge_image(vec2im(X,shape), scaling) | |
xdims = X.shape | |
Rdims = R.shape | |
return rgb | |
def save_image(rgb_images, path, gap=2): | |
''' | |
Takes as input a list of rgb images, places them next to each other with a gap and writes out the result. | |
Parameters | |
---------- | |
rgb_images : list , tuple, collection. such stuff | |
each item in the collection is expected to be an rgb image of dimensions [H x _ x 3] | |
where the width is variable | |
path : str | |
the output path of the assembled image | |
gap : int | |
optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images | |
Returns | |
------- | |
image : numpy.ndarray | |
the assembled image as written out to path | |
''' | |
sz = [] | |
image = [] | |
for i in range(len(rgb_images)): | |
if not sz: | |
sz = rgb_images[i].shape | |
image = rgb_images[i] | |
gap = np.zeros((sz[0], gap, sz[2])) | |
continue | |
if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]: | |
print('image', i, 'differs in size. unable to perform horizontal alignment') | |
print('expected: Hx_xD = {0}x_x{1}'.format(sz[0], sz[1])) | |
print('got : Hx_xD = {0}x_x{1}'.format(rgb_images[i].shape[0], rgb_images[i].shape[1])) | |
print('skipping image\n') | |
else: | |
image = np.hstack((image, gap, rgb_images[i])) | |
image *= 255 | |
image = image.astype(np.uint8) | |
print('saving image to ', path) | |
skimage.io.imsave(path, image) | |
return image | |
class IoU(Metric): | |
"""Computes the intersection over union (IoU) per class and corresponding | |
mean (mIoU). | |
Intersection over union (IoU) is a common evaluation metric for semantic | |
segmentation. The predictions are first accumulated in a confusion matrix | |
and the IoU is computed from it as follows: | |
IoU = true_positive / (true_positive + false_positive + false_negative). | |
Keyword arguments: | |
- num_classes (int): number of classes in the classification problem | |
- normalized (boolean, optional): Determines whether or not the confusion | |
matrix is normalized or not. Default: False. | |
- ignore_index (int or iterable, optional): Index of the classes to ignore | |
when computing the IoU. Can be an int, or any iterable of ints. | |
""" | |
def __init__(self, num_classes, normalized=False, ignore_index=None): | |
super().__init__() | |
self.conf_metric = ConfusionMatrix(num_classes, normalized) | |
if ignore_index is None: | |
self.ignore_index = None | |
elif isinstance(ignore_index, int): | |
self.ignore_index = (ignore_index,) | |
else: | |
try: | |
self.ignore_index = tuple(ignore_index) | |
except TypeError: | |
raise ValueError("'ignore_index' must be an int or iterable") | |
def reset(self): | |
self.conf_metric.reset() | |
def add(self, predicted, target): | |
"""Adds the predicted and target pair to the IoU metric. | |
Keyword arguments: | |
- predicted (Tensor): Can be a (N, K, H, W) tensor of | |
predicted scores obtained from the model for N examples and K classes, | |
or (N, H, W) tensor of integer values between 0 and K-1. | |
- target (Tensor): Can be a (N, K, H, W) tensor of | |
target scores for N examples and K classes, or (N, H, W) tensor of | |
integer values between 0 and K-1. | |
""" | |
# Dimensions check | |
assert predicted.size(0) == target.size(0), \ | |
'number of targets and predicted outputs do not match' | |
assert predicted.dim() == 3 or predicted.dim() == 4, \ | |
"predictions must be of dimension (N, H, W) or (N, K, H, W)" | |
assert target.dim() == 3 or target.dim() == 4, \ | |
"targets must be of dimension (N, H, W) or (N, K, H, W)" | |
# If the tensor is in categorical format convert it to integer format | |
if predicted.dim() == 4: | |
_, predicted = predicted.max(1) | |
if target.dim() == 4: | |
_, target = target.max(1) | |
self.conf_metric.add(predicted.view(-1), target.view(-1)) | |
def value(self): | |
"""Computes the IoU and mean IoU. | |
The mean computation ignores NaN elements of the IoU array. | |
Returns: | |
Tuple: (IoU, mIoU). The first output is the per class IoU, | |
for K classes it's numpy.ndarray with K elements. The second output, | |
is the mean IoU. | |
""" | |
conf_matrix = self.conf_metric.value() | |
if self.ignore_index is not None: | |
for index in self.ignore_index: | |
conf_matrix[:, self.ignore_index] = 0 | |
conf_matrix[self.ignore_index, :] = 0 | |
true_positive = np.diag(conf_matrix) | |
false_positive = np.sum(conf_matrix, 0) - true_positive | |
false_negative = np.sum(conf_matrix, 1) - true_positive | |
# Just in case we get a division by 0, ignore/hide the error | |
with np.errstate(divide='ignore', invalid='ignore'): | |
iou = true_positive / (true_positive + false_positive + false_negative) | |
return iou, np.nanmean(iou) | |