yu-rp
init
c64fb9f
from collections import OrderedDict
import math
from typing import Callable, Optional, Sequence, Tuple, Text
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint
import numbers
import einops
import numpy as np
from utils.misc import to_2tuple
from utils.hook import HookManager
class LayerNorm(nn.Module):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def __init__(self, normalized_shape, eps: float = 1e-5, elementwise_affine: bool = True, device=None, dtype=None,
hook: Optional[HookManager] = None):
super().__init__()
self.hook = hook or HookManager()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = torch.nn.Parameter(torch.empty(self.normalized_shape,))
self.bias = torch.nn.Parameter(torch.empty(self.normalized_shape,))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
def forward(self, x: torch.Tensor):
orig_type = x.dtype
assert self.normalized_shape == x.shape[-len(self.normalized_shape):]
dims = [-(i + 1) for i in range(len(self.normalized_shape))]
mean = self.hook('mean', ret=x.mean(dim=dims, keepdim=True))
mean_x2 = (x ** 2).mean(dim=dims, keepdim=True)
var = mean_x2 - mean ** 2
x_norm = self.hook('mean_reduced', ret=(x - mean)) / self.hook('sqrt_var', ret=torch.sqrt(var + self.eps))
if self.elementwise_affine:
x_norm = self.hook('renorm.post', ret=self.weight * x_norm + self.bias)
self.hook.finalize()
return x_norm.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
raise ValueError('Not implemented')
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
scaled_cosine=False,
scale_heads=False,
logit_scale_max=math.log(1. / 0.01),
attn_drop=0.,
proj_drop=0.
):
super().__init__()
self.scaled_cosine = scaled_cosine
self.scale_heads = scale_heads
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.logit_scale_max = logit_scale_max
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
if qkv_bias:
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
else:
self.in_proj_bias = None
if self.scaled_cosine:
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
else:
self.logit_scale = None
self.attn_drop = nn.Dropout(attn_drop)
if self.scale_heads:
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
else:
self.head_scale = None
self.out_proj = nn.Linear(dim, dim)
self.out_drop = nn.Dropout(proj_drop)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
L, N, C = x.shape
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
if self.logit_scale is not None:
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
attn = attn.view(N, self.num_heads, L, L) * logit_scale
attn = attn.view(-1, L, L)
else:
q = q * self.scale
attn = torch.bmm(q, k.transpose(-1, -2))
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = torch.bmm(attn, v)
if self.head_scale is not None:
x = x.view(N, self.num_heads, L, C) * self.head_scale
x = x.view(-1, L, C)
x = x.transpose(0, 1).reshape(L, N, C)
x = self.out_proj(x)
x = self.out_drop(x)
return x
class AttentionalPooler(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
n_head: int = 8,
n_queries: int = 256,
norm_layer: Callable = LayerNorm
):
super().__init__()
self.query = nn.Parameter(torch.randn(n_queries, d_model))
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim)
self.ln_q = norm_layer(d_model)
self.ln_k = norm_layer(context_dim)
def forward(self, x: torch.Tensor):
x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND
N = x.shape[1]
q = self.ln_q(self.query)
out = self.attn(self._repeat(q, N), x, x, need_weights=False)[0]
return out.permute(1, 0, 2) # LND -> NLD
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
class MLP(nn.Module):
def __init__(self, d_model: int, mlp_width: int, act_layer: Callable = nn.GELU, hook: Optional[HookManager] = None,):
super().__init__()
self.hook = hook or HookManager()
self.c_fc = nn.Linear(d_model, mlp_width)
self.gelu = act_layer()
self.c_proj = nn.Linear(mlp_width, d_model)
def forward(self, x):
x = self.hook('c_fc.post', ret=self.c_fc(x))
x = self.hook('gelu.post', ret=self.gelu(x))
x = self.hook('c_proj.post', ret=self.c_proj(x))
self.hook.finalize()
return x
class MultiheadAttention(nn.Module):
"""
There are variety of ways to look at multihead attention. Because of that I implemented a few so it will be easy to compare.
"""
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False, device=None, dtype=None, hook: Optional[HookManager] = None,):
super().__init__()
self.hook = hook or HookManager()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.in_proj_weight = nn.Parameter(torch.empty((3 * embed_dim, embed_dim)))
if bias:
self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim)))
self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim)))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
def forward_direct(self, x, attn_mask=None):
B, N, C = x.shape
qkv = self.hook('in_proj_bias.post',
ret=self.hook('in_proj.post',
ret=x @ self.in_proj_weight.T) + self.in_proj_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
k = self.hook('k', ret=k)
q = self.hook('q', ret=q)
v = self.hook('v', ret=v)
dk = q.size()[-1]
q = q / math.sqrt(dk)
q = self.hook('q_norm', ret=q)
attn = q @ k.transpose(-2, -1) # [B, H, N, N]
attn = self.hook('pre_mask', ret=attn)
if attn_mask is not None:
attn += attn_mask
attn = self.hook('post_mask', ret=attn)
attn = attn.softmax(dim=-1)
attn = self.hook('post_softmax', ret=attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.hook('attn_v', ret=x)
x = self.hook('out_proj_bias.post',
ret=self.hook('out_proj.post', ret=x @ self.out_proj.weight.T) + self.out_proj.bias)
return x
def _split_qkv_weight(self):
q_weight, k_weight, v_weight = (self.in_proj_weight[:self.embed_dim].reshape(self.num_heads, self.head_dim, -1),
self.in_proj_weight[self.embed_dim:self.embed_dim*2].reshape(self.num_heads, self.head_dim, -1),
self.in_proj_weight[self.embed_dim*2:].reshape(self.num_heads, self.head_dim, -1)
)
return q_weight, k_weight, v_weight
def _split_qkv_bias(self):
q_bias, k_bias, v_bias = (self.in_proj_bias[:self.embed_dim].reshape(1, self.num_heads, 1, self.head_dim),
self.in_proj_bias[self.embed_dim:self.embed_dim*2].reshape(1, self.num_heads, 1, self.head_dim),
self.in_proj_bias[self.embed_dim*2:].reshape(1, self.num_heads, 1, self.head_dim)
)
return q_bias, k_bias, v_bias
def forward_qkv(self, x, attn_mask=None):
B, N, C = x.shape
q_weight, k_weight, v_weight = (self.in_proj_weight[:self.embed_dim],
self.in_proj_weight[self.embed_dim:self.embed_dim*2],
self.in_proj_weight[self.embed_dim*2:])
q_bias, k_bias, v_bias = (self.in_proj_bias[:self.embed_dim],
self.in_proj_bias[self.embed_dim:self.embed_dim*2],
self.in_proj_bias[self.embed_dim*2:])
q = self.hook('in_q_bias.post',
ret=self.hook('in_q.post',
ret=x @ q_weight.T) +
q_bias).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
k = self.hook('in_k_bias.post',
ret=self.hook('in_k.post',
ret=x @ k_weight.T) +
k_bias).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
v = self.hook('in_v_bias.post',
ret=self.hook('in_v.post',
ret=x @ v_weight.T) +
v_bias).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
dk = q.size()[-1]
q = q / math.sqrt(dk)
q = self.hook('q_norm', ret=q)
attn = q @ k.transpose(-2, -1)
attn = self.hook('attention.pre_mask', ret=attn)
if attn_mask is not None:
attn += attn_mask
attn = self.hook('attention.post_mask', ret=attn)
attn = attn.softmax(dim=-1)
attn = self.hook('attention.post_softmax', ret=attn) # [B, H, N, N]
x = torch.einsum('bhnm,bhmc->bhnmc', attn, v)
x = self.hook('extended_attn_v', ret=x)
x = x.sum(axis=3).transpose(1, 2).reshape(B, N, C)
x = self.hook('attn_v', ret=x)
x = self.hook('out.post_bias',
ret=self.hook('out.post',
ret=x @ self.out_proj.weight.T) +
self.out_proj.bias)
return x
def forward_per_head(self, x, attn_mask=None):
""" Old Version
B, N, C = x.shape # batch size, number of tokens, embedding dim
q_weight, k_weight, v_weight = self._split_qkv_weight()# number of head, head im
q_bias, k_bias, v_bias = self._split_qkv_bias()
q = self.hook('in_q_bias.post',
ret=self.hook('in_q.post',
ret=torch.einsum('bnc,hdc->bhnd', x, q_weight)) +
q_bias)
k = self.hook('in_k_bias.post',
ret=self.hook('in_k.post',
ret=torch.einsum('bnc,hdc->bhnd', x, k_weight)) +
k_bias)
v = self.hook('in_v_bias.post',
ret=self.hook('in_v.post',
ret=torch.einsum('bnc,hdc->bhnd', x, v_weight)) +
v_bias) # (B, self.num_heads, N, self.head_dim)
dk = q.size()[-1]
q = q / math.sqrt(dk)
q = self.hook('q_norm', ret=q)
attn = q @ k.transpose(-2, -1)
attn = self.hook('attention.pre_mask', ret=attn)
if attn_mask is not None:
attn += attn_mask
attn = self.hook('attention.post_mask', ret=attn)
attn = attn.softmax(dim=-1)
attn = self.hook('attention.post_softmax', ret=attn) # [B, H, N, N]
x = torch.einsum('bhnm,bhmc->bnmhc', attn, v) # We also switch here back from head-first to n-first
x = self.hook('extended_attn_v', ret=x)
x = self.hook('out.post', ret=torch.einsum('bnmhc,dhc->bnmhd', x, self.out_proj.weight.reshape(self.embed_dim, self.num_heads, self.head_dim)))
x = self.hook('out.post_collapse', ret=x.sum(axis=[2,3]))
x = self.hook('out.post_bias', ret=x + self.out_proj.bias)
return x"""
B, N, C = x.shape # batch size, number of tokens, embedding dim
q_weight, k_weight, v_weight = self._split_qkv_weight()# number of head, head im
q_bias, k_bias, v_bias = self._split_qkv_bias()
q = self.hook('in_q_bias.post',
ret=self.hook('in_q.post',
ret=torch.einsum('bnc,hdc->bhnd', x, q_weight)) +
q_bias)
k = self.hook('in_k_bias.post',
ret=self.hook('in_k.post',
ret=torch.einsum('bnc,hdc->bhnd', x, k_weight)) +
k_bias)
v = self.hook('in_v_bias.post',
ret=self.hook('in_v.post',
ret=torch.einsum('bnc,hdc->bhnd', x, v_weight)) +
v_bias) # (B, self.num_heads, N, self.head_dim)
dk = q.size()[-1]
q = q / math.sqrt(dk)
q = self.hook('q_norm', ret=q)
attn = q @ k.transpose(-2, -1)
attn = self.hook('attention.pre_mask', ret=attn)
if attn_mask is not None:
attn += attn_mask
attn = self.hook('attention.post_mask', ret=attn)
attn = attn.softmax(dim=-1)
attn = self.hook('attention.post_softmax', ret=attn) # [B, H, N, N]
x = torch.einsum('bhnm,bhmc->bnmhc', attn, v) # We also switch here back from head-first to n-first
x = self.hook('extended_attn_v', ret=x)
x = self.hook('out.post', ret=torch.einsum('bnmhc,dhc->bnmd', x, self.out_proj.weight.reshape(self.embed_dim, self.num_heads, self.head_dim)))
x = self.hook('out.post_collapse', ret=x.sum(axis=[2]))
x = self.hook('out.post_bias', ret=x + self.out_proj.bias)
return x
def _get_ov_circuit(self,):
reshaped_o = self.out_proj.weight.reshape(self.embed_dim, self.num_heads, self.head_dim)
_, _, v_weight = self._split_qkv_weight() # num_heads, head_dim, embed_dim
_, _, v_bias = self._split_qkv_bias() # 1, num_heads, 1, head_dim
ov_circuit = torch.einsum('onh,nhi->oni', reshaped_o, v_weight)
ov_bias_circuit = torch.einsum('onh,bnxh->bnxo', reshaped_o, v_bias) # [1, num_heads, 1, embed_dim]
return ov_circuit, ov_bias_circuit
def forward_ov_circuit(self, x, attn_mask=None):
B, N, C = x.shape
q_weight, k_weight, _ = self._split_qkv_weight()
q_bias, k_bias, _ = self._split_qkv_bias()
q = self.hook('in_q_bias.post',
ret=self.hook('in_q.post',
ret=torch.einsum('bnc,hdc->bhnd', x, q_weight)) +
q_bias)
k = self.hook('in_k_bias.post',
ret=self.hook('in_k.post',
ret=torch.einsum('bnc,hdc->bhnd', x, k_weight)) +
k_bias)
ov, ov_bias = self._get_ov_circuit()
ov = self.hook('ov', ret=ov)
ov_bias = self.hook('ov_bias', ret=ov_bias)
v = self.hook('ov_bias.post',
ret=self.hook('ov.post',
ret=torch.einsum('bnc,dhc->bhnd', x, ov)) +
ov_bias)
dk = q.size()[-1]
q = q / math.sqrt(dk)
q = self.hook('q_norm', ret=q)
attn = q @ k.transpose(-2, -1)
attn = self.hook('attention.pre_mask', ret=attn)
if attn_mask is not None:
attn += attn_mask
attn = self.hook('attention.post_mask', ret=attn)
attn = attn.softmax(dim=-1)
attn = self.hook('attention.post_softmax', ret=attn) # [B, H, N, N]
x = torch.einsum('bhnm,bhmc->bnmhc', attn, v) # We also switch here back from head-first to n-first
x = self.hook('extended_attn_ov', ret=x)
x = self.hook('out.post_collapse', ret=x.sum(axis=[2,3]))
x = self.hook('out.post_bias', ret=x + self.out_proj.bias)
return x
def forward(self, x, attn_mask=None, method: Text = 'ov_circuit'):
if method == 'direct':
x = self.forward_direct(x, attn_mask=attn_mask)
elif method == 'qkv':
x = self.forward_qkv(x, attn_mask=attn_mask)
elif method == 'head':
x = self.forward_per_head(x, attn_mask=attn_mask)
elif method == 'ov_circuit':
x = self.forward_ov_circuit(x, attn_mask=attn_mask)
self.hook.finalize()
return x
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
hook: Optional[HookManager] = None,
):
super().__init__()
self.hook = hook or HookManager()
self.ln_1 = norm_layer(d_model, hook=hook.fork('ln_1'))
self.attn = MultiheadAttention(d_model, n_head, hook=hook.fork('attn'))
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_2 = norm_layer(d_model, hook=hook.fork('ln_2'))
mlp_width = int(d_model * mlp_ratio)
self.mlp = MLP(d_model, mlp_width, act_layer=act_layer, hook=hook.fork('mlp'))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def attention(
self,
q_x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
method: Text = 'direct'
):
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
return self.attn(
q_x, attn_mask=attn_mask,
method=method
)
def forward(
self,
q_x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
attn_method: Text = 'direct',
):
q_x = self.hook('pre', ret=q_x)
after_ln1 = self.ln_1(q_x)
after_attn = self.attention(q_x=after_ln1, attn_mask=attn_mask, method=attn_method)
after_attn = self.hook('after_attn', ret=after_attn)
x = q_x + self.ls_1(after_attn)
after_ln2 = self.ln_2(x)
after_mlp = self.mlp(after_ln2)
after_mlp = self.hook('after_mlp', ret=after_mlp)
x = x + self.ls_2(after_mlp)
x = self.hook('post', ret=x)
self.hook.finalize()
return x
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
hook: Optional[HookManager] = None,
):
super().__init__()
self.hook = hook or HookManager()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width, heads, mlp_ratio, ls_init_value=ls_init_value,
act_layer=act_layer, norm_layer=norm_layer, hook=hook.fork(f'resblocks.{i}'))
for i in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
return self.resblocks[0].mlp.c_fc.int8_original_dtype
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, attn_method: Text = 'direct'):
for r in self.resblocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
raise ValueError('grad_checkpointing not implement')
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
x = checkpoint(r, x, None, None, attn_mask)
else:
x = r(x, attn_mask=attn_mask, attn_method=attn_method)
self.hook.finalize()
return x
class VisionTransformer(nn.Module):
output_tokens: torch.jit.Final[bool]
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
ls_init_value: float = None,
global_average_pool: bool = False,
attentional_pool: bool = False,
n_queries: int = 256,
attn_pooler_heads: int = 8,
output_dim: int = 512,
patch_dropout: float = 0.,
input_patchnorm: bool = False,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
output_tokens: bool = False,
hook: Optional[HookManager] = None
):
super().__init__()
self.hook = hook or HookManager()
self.output_tokens = output_tokens
image_height, image_width = self.image_size = to_2tuple(image_size)
patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
self.grid_size = (image_height // patch_height, image_width // patch_width)
self.output_dim = output_dim
# whether to layernorm each patch, as done in dual patchnorm paper - https://arxiv.org/abs/2302.01327v1
self.input_patchnorm = input_patchnorm
if input_patchnorm:
patch_input_dim = patch_height * patch_width * 3
self.patchnorm_pre_ln = LayerNorm(patch_input_dim, hook=hook.fork('patchnorm_pre_ln'))
self.conv1 = nn.Linear(patch_input_dim, width)
else:
self.patchnorm_pre_ln = nn.Identity()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
# class embeddings and positional embeddings
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.ln_pre = norm_layer(width, hook=hook.fork('ln_pre'))
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
hook=hook.fork('transformer'),
)
self.global_average_pool = global_average_pool
if attentional_pool:
self.attn_pool = AttentionalPooler(output_dim, width, n_head=attn_pooler_heads, n_queries=n_queries)
self.ln_post = norm_layer(output_dim, hook=hook.fork('ln_post'))
self.proj = nn.Parameter(scale * torch.randn(output_dim, output_dim))
else:
self.attn_pool = None
self.ln_post = norm_layer(width, hook=hook.fork('ln_post'))
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.global_average_pool:
return x.mean(dim=1), x
else:
return x[:, 0], x[:, 1:]
def forward(self, x: torch.Tensor, attn_method: Text = 'direct'):
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
if self.input_patchnorm:
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
x = x.reshape(x.shape[0], x.shape[1], self.grid_size[0], self.patch_size[0], self.grid_size[1], self.patch_size[1])
x = x.permute(0, 2, 4, 1, 3, 5)
x = x.reshape(x.shape[0], self.grid_size[0] * self.grid_size[1], -1)
x = self.hook('patchnorm_pre_ln.post', ret=self.patchnorm_pre_ln(x))
x = self.hook('conv1.post', ret=self.conv1(x))
else:
x = self.hook('conv1.post', ret=self.conv1(x)) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = self.hook('positional_embedding.post', ret=x + self.positional_embedding.to(x.dtype))
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
x = self.hook('patch_dropout.post', ret=self.patch_dropout(x))
x = self.hook('ln_pre_post', ret=self.ln_pre(x))
# x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_method=attn_method)
# x = x.permute(1, 0, 2) # LND -> NLD
if self.attn_pool is not None:
x = self.hook('attn_pool.post', ret=self.attn_pool(x))
x = self.hook('ln_post_post', ret=self.ln_post(x))
pooled, tokens = self.hook('global_pool.post', ret=self._global_pool(x))
else:
pooled, tokens = self.hook('global_pool.post', ret=self._global_pool(x))
pooled = self.hook('ln_post_post', ret=self.ln_post(pooled)) # pooled is cls token, tokens are others
if self.proj is not None:
pooled = self.hook('proj.post', ret=self.hook('proj.pre', ret=pooled) @ self.proj)
self.hook.finalize()
if self.output_tokens:
return pooled, tokens
return pooled
class TextTransformer(nn.Module):
output_tokens: torch.jit.Final[bool]
def __init__(
self,
context_length: int = 77,
vocab_size: int = 49408,
width: int = 512,
heads: int = 8,
layers: int = 12,
ls_init_value: float = None,
output_dim: int = 512,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
embed_cls: bool = False,
pad_id: int = 0,
output_tokens: bool = False,
hook: Optional[HookManager] = None
):
super().__init__()
self.hook = hook or HookManager()
self.output_tokens = output_tokens
self.num_pos = self.context_length = context_length
self.vocab_size = vocab_size
self.width = width
self.output_dim = output_dim
self.heads = heads
self.pad_id = pad_id
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
if embed_cls:
self.cls_emb = nn.Parameter(torch.empty(width))
self.num_pos += 1
else:
self.cls_emb = None
self.token_embedding = nn.Embedding(vocab_size, width)
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
hook=self.hook.fork('transformer'),
)
self.ln_final = norm_layer(width)
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
self.init_parameters()
def init_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if self.cls_emb is not None:
nn.init.normal_(self.cls_emb, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.num_pos, self.num_pos)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def build_cls_mask(self, text, cast_dtype: torch.dtype):
cls_mask = (text != self.pad_id).unsqueeze(1)
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=1.0)
additive_mask = torch.empty(cls_mask.shape, dtype=cast_dtype, device=cls_mask.device)
additive_mask.fill_(0)
additive_mask.masked_fill_(~cls_mask, float("-inf"))
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
return additive_mask
def _repeat(self, t, N: int):
return t.reshape(1, 1, -1).repeat(N, 1, 1)
def forward(self, text, attn_method: Text = 'direct'):
cast_dtype = self.transformer.get_cast_dtype()
seq_len = text.shape[1]
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
attn_mask = self.attn_mask
if self.cls_emb is not None:
seq_len += 1
x = torch.cat([x, self._repeat(self.cls_emb, x.shape[0])], dim=1)
cls_mask = self.build_cls_mask(text, cast_dtype)
attn_mask = attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len]
x = x + self.positional_embedding[:seq_len].to(cast_dtype)
#x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=attn_mask, attn_method=attn_method)
#x = x.permute(1, 0, 2) # LND -> NLD
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
if self.cls_emb is not None:
pooled, tokens = x[:, -1], x[:, :-1]
pooled = self.ln_final(pooled)
else:
x = self.ln_final(x)
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
if self.text_projection is not None:
pooled = pooled @ self.text_projection
self.hook.finalize()
if self.output_tokens:
return pooled, tokens
return pooled