Adjusts
Browse files- README.md +1 -1
- app.py +63 -38
- requirements.txt +2 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 📉
|
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
pinned: false
|
9 |
app_port: 8080
|
10 |
---
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.32.1
|
8 |
pinned: false
|
9 |
app_port: 8080
|
10 |
---
|
app.py
CHANGED
@@ -4,31 +4,48 @@ import uvicorn
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sentence_transformers.util import cos_sim
|
6 |
from sentence_transformers.quantization import quantize_embeddings
|
7 |
-
|
8 |
-
|
9 |
import spaces
|
10 |
-
|
|
|
|
|
11 |
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
|
16 |
-
@spaces.GPU
|
17 |
-
def embed(text):
|
18 |
-
return [0,1]
|
19 |
-
#query_embedding = Embedder.encode(text)
|
20 |
-
#return query_embedding.tolist();
|
21 |
-
|
22 |
-
|
23 |
|
24 |
@app.post("/v1/embeddings")
|
25 |
async def openai_embeddings(request: Request):
|
26 |
body = await request.json();
|
|
|
|
|
|
|
27 |
print(body);
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
text = body['input'];
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return {
|
33 |
'object': "list"
|
34 |
,'data': [{
|
@@ -36,45 +53,53 @@ async def openai_embeddings(request: Request):
|
|
36 |
,'embedding': embeddings
|
37 |
,'index':0
|
38 |
}]
|
39 |
-
,'model':
|
40 |
,'usage':{
|
41 |
'prompt_tokens': 0
|
42 |
,'total_tokens': 0
|
43 |
}
|
44 |
}
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
with gr.Blocks(fill_height=True) as demo:
|
50 |
-
text = gr.Textbox();
|
51 |
-
embeddings = gr.Textbox()
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
print("Loading embedding model");
|
57 |
-
Embedder = None #SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
58 |
-
|
59 |
-
# demo.run_startup_events()
|
60 |
-
|
61 |
-
|
62 |
-
#demo.launch(
|
63 |
-
# share=False,
|
64 |
-
# debug=False,
|
65 |
-
# server_port=7860,
|
66 |
-
# server_name="0.0.0.0",
|
67 |
-
# allowed_paths=[]
|
68 |
-
#)
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
print("Mounting app...");
|
74 |
-
GradioApp = gr.mount_gradio_app(app, demo, path="
|
75 |
-
|
76 |
|
77 |
-
demo.close();
|
78 |
|
79 |
if __name__ == '__main__':
|
80 |
print("Running uviconr...");
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sentence_transformers.util import cos_sim
|
6 |
from sentence_transformers.quantization import quantize_embeddings
|
|
|
|
|
7 |
import spaces
|
8 |
+
from gradio_client import Client
|
9 |
+
import json
|
10 |
+
import os
|
11 |
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@app.post("/v1/embeddings")
|
18 |
async def openai_embeddings(request: Request):
|
19 |
body = await request.json();
|
20 |
+
token = request.headers.get("authorization");
|
21 |
+
apiName = body.get("ApiName");
|
22 |
+
|
23 |
print(body);
|
24 |
|
25 |
+
BearerToken = None;
|
26 |
+
if not token is None:
|
27 |
+
parts = token.split(' ');
|
28 |
+
BearerToken = parts[1];
|
29 |
+
print("Using token...");
|
30 |
+
|
31 |
+
SpacePath = body['model']
|
32 |
+
|
33 |
+
print("Creating client...");
|
34 |
+
SpaceClient = Client(SpacePath, hf_token = BearerToken)
|
35 |
+
|
36 |
+
|
37 |
+
if not apiName:
|
38 |
+
apiName = "/embed"
|
39 |
+
|
40 |
text = body['input'];
|
41 |
+
|
42 |
+
result = SpaceClient.predict(
|
43 |
+
text=text,
|
44 |
+
api_name=apiName
|
45 |
+
)
|
46 |
+
embeddings = json.loads(result);
|
47 |
+
|
48 |
+
|
49 |
return {
|
50 |
'object': "list"
|
51 |
,'data': [{
|
|
|
53 |
,'embedding': embeddings
|
54 |
,'index':0
|
55 |
}]
|
56 |
+
,'model': SpacePath
|
57 |
,'usage':{
|
58 |
'prompt_tokens': 0
|
59 |
,'total_tokens': 0
|
60 |
}
|
61 |
}
|
62 |
+
|
63 |
+
SpaceHost = os.environ.get("SPACE_HOST");
|
64 |
|
65 |
+
if not SpaceHost:
|
66 |
+
SpaceHost = "localhost"
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown(f"""
|
70 |
+
This space allow you connect SQL Server 2025 with Hugging Face to generate embeddings!
|
71 |
+
First, create a ZeroGPU Space that export an endpoint called embed.
|
72 |
+
That endpoint must accept a parameter called text.
|
73 |
+
Then, create the external model using T-SQL:
|
74 |
+
|
75 |
+
```sql
|
76 |
+
CREATE EXTERNAL MODEL HuggingFace
|
77 |
+
WITH (
|
78 |
+
LOCATION = 'https://{SpaceHost}/v1/embeddings',
|
79 |
+
API_FORMAT = 'OpenAI',
|
80 |
+
MODEL_TYPE = EMBEDDINGS,
|
81 |
+
MODEL = 'user/space'
|
82 |
+
);
|
83 |
+
```
|
84 |
+
|
85 |
+
If you prefer, just type the space name into field bellow and we generate the right T-SQL command for you!
|
86 |
+
|
87 |
|
88 |
+
""")
|
89 |
+
|
90 |
+
SpaceName = gr.Textbox(label="Space")
|
91 |
+
EndpointName = gr.Textbox(value="/embed", label = "EndpointName");
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
|
95 |
+
## hack para funcionar com ZeroGPU nesse mesmo space
|
96 |
+
#print("Demo run...");
|
97 |
+
#(app2,url,other) = demo.launch(prevent_thread_lock=True, server_name=None, server_port=8000);
|
98 |
+
# demo.close
|
99 |
|
100 |
print("Mounting app...");
|
101 |
+
GradioApp = gr.mount_gradio_app(app, demo, path="", ssr_mode=False);
|
|
|
102 |
|
|
|
103 |
|
104 |
if __name__ == '__main__':
|
105 |
print("Running uviconr...");
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
-
sentence_transformers
|
|
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
+
sentence_transformers
|
4 |
+
gradio-client
|