Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,14 @@ from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
-
|
8 |
-
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
def mean_pooling(model_output, attention_mask):
|
15 |
token_embeddings = model_output[0]
|
@@ -18,18 +20,28 @@ def mean_pooling(model_output, attention_mask):
|
|
18 |
|
19 |
@spaces.GPU
|
20 |
def TxtEmbed(text):
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
24 |
|
25 |
with torch.no_grad():
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
return (
|
33 |
|
34 |
|
35 |
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
+
model = AutoModel.from_pretrained('neuralmind/bert-base-portuguese-cased')
|
|
|
8 |
|
9 |
+
# processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
10 |
+
# vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
11 |
+
|
12 |
+
# tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
|
13 |
+
# text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
14 |
+
# text_model.eval()
|
15 |
|
16 |
def mean_pooling(model_output, attention_mask):
|
17 |
token_embeddings = model_output[0]
|
|
|
20 |
|
21 |
@spaces.GPU
|
22 |
def TxtEmbed(text):
|
23 |
+
import torch
|
24 |
+
|
25 |
|
26 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
|
|
27 |
|
28 |
with torch.no_grad():
|
29 |
+
outs = model(input_ids)
|
30 |
+
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
|
31 |
+
|
32 |
+
|
33 |
|
34 |
+
# sentences = [text]
|
35 |
+
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
36 |
+
#
|
37 |
+
# with torch.no_grad():
|
38 |
+
# model_output = text_model(**encoded_input)
|
39 |
+
#
|
40 |
+
# text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
41 |
+
# text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
|
42 |
+
# text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
|
43 |
|
44 |
+
return (encoded.tolist())[0];
|
45 |
|
46 |
|
47 |
|