import spaces import gradio as gr import platform import os; import socket; import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() def forward(self, x): pass def device(): return next(model.parameters()).device model = SimpleModel().to(device); @torch.inference_mode() def sysinfo(): RandomTensor = torch.randn(1, 2) # Example audio tensor tensorExample = RandomTensor.to(device) return f""" hostname: {platform.node()} {socket.gethostname()} device: {device} model device: {model.device} tensor: {tensorExample} """; @spaces.GPU def gpu(): return sysinfo(); def nogpu(): return sysinfo(); with gr.Blocks() as demo: outgpu = gr.Textbox(lines=5); outnpu = gr.Textbox(lines=5); btngpu = gr.Button(value="gpu"); btngpun = gr.Button(value="ngpu"); btngpu.click(gpu, None, [outgpu]); btngpun.click(nogpu, None, [outnpu]); if __name__ == "__main__": demo.launch( share=False, debug=False, server_port=7860, server_name="0.0.0.0" )