Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
def update_value(val): | |
return f'Value is set to {val}' | |
def yolov7_inference( | |
image: gr.Image = None, | |
conf_threshold: gr.Slider = 0.20, | |
): | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
path = 'y7-prdef.pt' | |
model = torch.hub.load("WongKinYiu/yolov7","custom",f"{path}") | |
model.conf = conf_threshold | |
results = model([image], size=640) | |
return results.render()[0] | |
demo = gr.Blocks() | |
with demo: | |
dd = gr.Interface( | |
yolov7_inference, | |
gr.Image(type="pil"), | |
"image", | |
title="The detection of jar lid defects using Yolov7", | |
examples=[ | |
os.path.join(os.path.dirname(__file__), "example1.JPG"), | |
os.path.join(os.path.dirname(__file__), "example2.JPG"), | |
os.path.join(os.path.dirname(__file__), "example3.JPG"), | |
], | |
) | |
md = gr.Markdown("Confidence Threshold") | |
conf_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, label='Value') | |
#inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="Value"), | |
#inp.change(fn=yolov7_inference, inputs=inp, outputs=md) | |
conf_threshold.change(fn=update_value, inputs=conf_threshold, outputs=md) | |
demo.launch() | |