rsatish1110 commited on
Commit
513afb6
·
1 Parent(s): f4ca2fd

Create new file

Browse files
Files changed (1) hide show
  1. app.py +209 -0
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import gradio as gr
5
+ import pandas as pd
6
+ import tarfile
7
+ import urllib.request
8
+
9
+
10
+ DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
11
+ HOUSING_PATH = os.path.join("datasets", "housing")
12
+ HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"
13
+
14
+ def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
15
+ if not os.path.isdir(housing_path):
16
+ os.makedirs(housing_path)
17
+ tgz_path = os.path.join(housing_path, "housing.tgz")
18
+ urllib.request.urlretrieve(housing_url, tgz_path)
19
+ housing_tgz = tarfile.open(tgz_path)
20
+ housing_tgz.extractall(path=housing_path)
21
+ housing_tgz.close()
22
+
23
+
24
+
25
+ def load_housing_data(housing_path=HOUSING_PATH):
26
+ csv_path = os.path.join(housing_path, "housing.csv")
27
+ return pd.read_csv(csv_path)
28
+
29
+
30
+ #1. Download the data
31
+
32
+ fetch_housing_data()
33
+
34
+ housing_pd = load_housing_data()
35
+ housing_pd.head()
36
+
37
+ ## tentatively drop categorical feature
38
+ housing = housing_pd.drop('ocean_proximity', axis=1)
39
+ housing
40
+
41
+
42
+
43
+ #2. Prepare the Data for Machine Learning Algorithms
44
+ ## 1. split data to get train and test set
45
+ from sklearn.model_selection import train_test_split
46
+ train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
47
+
48
+ ## 2. clean the missing values
49
+ train_set_clean = train_set.dropna(subset=["total_bedrooms"])
50
+ train_set_clean
51
+
52
+ ## 2. derive training features and training labels
53
+ train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
54
+ train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
55
+
56
+
57
+ ## 4. scale the numeric features in training set
58
+ from sklearn.preprocessing import MinMaxScaler
59
+ scaler = MinMaxScaler() ## define the transformer
60
+ scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
61
+
62
+ train_features_normalized = scaler.transform(train_features)
63
+ train_features_normalized
64
+
65
+ #3. Training ML model on the Training Set
66
+
67
+ from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
68
+ lin_reg = LinearRegression() ## Initialize the class
69
+ lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
70
+
71
+
72
+
73
+ ### visualize the data
74
+ def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
75
+ path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
76
+ print("Saving figure", fig_id, ' to ',path)
77
+ if tight_layout:
78
+ plt.tight_layout()
79
+ plt.savefig(path, format=fig_extension, dpi=resolution)
80
+
81
+ PROJECT_ROOT_DIR='./'
82
+ IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
83
+ os.makedirs(IMAGES_PATH, exist_ok=True)
84
+
85
+ images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project")
86
+ os.makedirs(images_path, exist_ok=True)
87
+ DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
88
+ filename = "california.png"
89
+ print("Downloading", filename)
90
+ url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename
91
+ urllib.request.urlretrieve(url, os.path.join(images_path, filename))
92
+
93
+
94
+ ### written by Jie
95
+ def draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' ):
96
+ import matplotlib.image as mpimg
97
+ california_img=mpimg.imread(os.path.join(images_path, filename))
98
+ ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
99
+ s=housing['population']/100, label="Population",
100
+ c="median_house_value", cmap=plt.get_cmap("jet"),
101
+ colorbar=False, alpha=0.4)
102
+ plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
103
+ cmap=plt.get_cmap("jet"))
104
+ plt.ylabel("Latitude", fontsize=18)
105
+ plt.xlabel("Longitude", fontsize=18)
106
+
107
+ plt.xticks(fontsize=18, rotation=0)
108
+ plt.yticks(fontsize=18, rotation=0)
109
+
110
+
111
+ plt.plot(longitude,latitude, "ro", alpha=0.7, marker=r'$\clubsuit$', markersize=30)
112
+
113
+ plt.annotate("Your location is here", xy=(longitude,latitude), xytext=(longitude+1,latitude+1), fontsize=20,
114
+ arrowprops=dict(arrowstyle="->"))
115
+
116
+
117
+ prices = housing["median_house_value"]
118
+ tick_values = np.linspace(prices.min(), prices.max(), 11)
119
+ cbar = plt.colorbar(ticks=tick_values/prices.max())
120
+ cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
121
+ cbar.set_label('Median House Value', fontsize=16)
122
+
123
+ plt.legend(fontsize=16)
124
+ save_fig(fig_id)
125
+ #plt.show()
126
+
127
+ path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
128
+ return path
129
+
130
+
131
+
132
+ def get_sample_data(num_data):
133
+ sample_data = []
134
+ for i in range(num_data):
135
+ samp = housing.sample(1)
136
+ longitude = float(samp['longitude'].values[0])
137
+ latitude = float(samp['latitude'].values[0])
138
+ housing_median_age = float(samp['housing_median_age'].values[0])
139
+ total_rooms = float(samp['total_rooms'].values[0])
140
+ total_bedrooms = float(samp['total_bedrooms'].values[0])
141
+ population = float(samp['population'].values[0])
142
+ households = float(samp['households'].values[0])
143
+ median_income = float(samp['median_income'].values[0])
144
+
145
+ sample_data.append([longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income])
146
+ return sample_data
147
+
148
+
149
+ def predict_price(longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income):
150
+ # initialize data of lists.
151
+ data = {'longitude':float(longitude),
152
+ 'latitude':float(latitude),
153
+ 'housing_median_age':float(housing_median_age),
154
+ 'total_rooms':float(total_rooms),
155
+ 'total_bedrooms':float(total_bedrooms),
156
+ 'population':float(population),
157
+ 'households':float(households),
158
+ 'median_income':float(median_income),
159
+ }
160
+ test_features = pd.DataFrame(columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
161
+ 'total_bedrooms', 'population', 'households', 'median_income'])
162
+ # Create DataFrame
163
+ test_features = test_features.append(data,ignore_index=True)
164
+ test_features = test_features.dropna(subset=["total_bedrooms"])
165
+
166
+ ## 3. scale the numeric features in test set.
167
+ ## important note: do not apply fit function on the test set, using same scalar from training set
168
+ test_features_normalized = scaler.transform(test_features)
169
+ test_features_normalized
170
+
171
+ pred = lin_reg.predict(test_features_normalized)[0]
172
+
173
+ map_file = draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' )
174
+
175
+ return pred,map_file
176
+
177
+
178
+ ### configure inputs/outputs
179
+
180
+
181
+ set_longitude = gr.inputs.Slider(-124.350000, -114.310000, step=0.5, default=-120, label = 'Longitude')
182
+ set_latitude = gr.inputs.Slider(32, 41, step=0.5, default=33, label = 'Latitude')
183
+ set_housing_median_age = gr.inputs.Slider(1, 52, step=1, default=10, label = 'Housing_median_age (Year)')
184
+ set_total_rooms = gr.inputs.Slider(1, 40000, step=5, default=10000, label = 'Total_rooms')
185
+ set_total_bedrooms = gr.inputs.Slider(1, 6445, step=5, default=5000, label = 'Total_bedrooms')
186
+ set_population = gr.inputs.Slider(3, 35682, step=5, default=10, label = 'Population')
187
+ set_households = gr.inputs.Slider(1, 6082, step=5, default=10, label = 'Households')
188
+ set_median_income = gr.inputs.Slider(0, 15, step=0.5, default=10, label = 'Median_income')
189
+
190
+
191
+
192
+ set_label = gr.outputs.Textbox(label="Predicted Housing Prices")
193
+
194
+ # define output as the single class text
195
+ set_out_images = gr.outputs.Image(label="Closest Neighbors")
196
+
197
+
198
+ ### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
199
+ interface = gr.Interface(fn=predict_price,
200
+ inputs=[set_longitude, set_latitude,set_housing_median_age,set_total_rooms,set_total_bedrooms,set_population,set_households,set_median_income],
201
+ outputs=[set_label,set_out_images],
202
+ examples_per_page = 2,
203
+ examples = get_sample_data(10),
204
+ title="CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction",
205
+ description= "Click examples below for a quick demo",
206
+ theme = 'huggingface',
207
+ layout = 'vertical'
208
+ )
209
+ interface.launch(debug=True)