Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, BigBirdForQuestionAnswering
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
|
6 |
+
model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
|
7 |
+
squad_ds = load_dataset("squad_v2", split="train")
|
8 |
+
# select random article and question
|
9 |
+
LONG_ARTICLE = squad_ds[81514]["context"]
|
10 |
+
QUESTION = squad_ds[81514]["question"]
|
11 |
+
QUESTION
|
12 |
+
|
13 |
+
inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
|
14 |
+
# long article and question input
|
15 |
+
list(inputs["input_ids"].shape)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
answer_start_index = outputs.start_logits.argmax()
|
21 |
+
answer_end_index = outputs.end_logits.argmax()
|
22 |
+
predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
23 |
+
predict_answer_token = tokenizer.decode(predict_answer_token_ids)
|