File size: 6,850 Bytes
aa4fa52
 
 
 
 
 
9e790ed
aa4fa52
 
 
 
 
 
 
88ee5e1
 
4d89474
 
aa4fa52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd01e9
aa4fa52
 
edbedf3
aa4fa52
 
 
 
 
7e4f428
aa4fa52
 
 
 
 
 
 
 
 
cbd01e9
aa4fa52
 
edbedf3
 
aa4fa52
 
 
 
edbedf3
aa4fa52
 
 
 
 
 
 
 
 
2042d5a
aa4fa52
 
 
edbedf3
 
c7191ea
 
 
edbedf3
aa4fa52
 
 
 
 
edbedf3
2042d5a
 
aa4fa52
2042d5a
aa4fa52
 
 
2042d5a
 
aa4fa52
 
 
 
edbedf3
2042d5a
 
c7191ea
2042d5a
edbedf3
 
 
 
 
 
aa4fa52
edbedf3
 
9e790ed
edbedf3
 
 
 
 
 
c7191ea
edbedf3
 
 
 
9e790ed
fa7567e
aa4fa52
6a8529c
fa7567e
a7a8f80
edbedf3
fa7567e
aa4fa52
edbedf3
6a8529c
 
 
fa7567e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
import torch
import numpy as np
import faiss
import PyPDF2
import os
import langchain

from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, BartForQuestionAnswering
from transformers import BartForConditionalGeneration, BartTokenizer, AutoTokenizer

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader

from streamlit import runtime

runtime.exists()

device = torch.device("cpu")
if torch.cuda.is_available():
   print("Training on GPU")
   device = torch.device("cuda:0")

file_url = "https://arxiv.org/pdf/1706.03762.pdf"
file_path = "assets/attention.pdf"

if not os.path.exists('assets'):
    os.mkdir('assets')

if not os.path.isfile(file_path):
    os.system(f'curl -o {file_path} {file_url}')
else:
    print("File already exists!")

class Retriever:

  def __init__(self, file_path, device, context_model_name, question_model_name):
    self.file_path = file_path
    self.device = device

    self.context_tokenizer = DPRContextEncoderTokenizer.from_pretrained(context_model_name)
    self.context_model = DPRContextEncoder.from_pretrained(context_model_name).to(device)

    self.question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(question_model_name)
    self.question_model = DPRQuestionEncoder.from_pretrained(question_model_name).to(device)

  def token_len(self, text):
    tokens = self.context_tokenizer.encode(text)
    return len(tokens)

  def extract_text_from_pdf(self, file_path):
    with open(file_path, 'rb') as file:
        reader = PyPDF2.PdfReader(file)
        text = ''
        for page in reader.pages:
            text += page.extract_text()
    return text

  def get_text(self):
    with open(self.file_path, 'rb') as file:
        reader = PyPDF2.PdfReader(file)
        text = ''
        for page in reader.pages:
            text += page.extract_text()
    return text

  def load_chunks(self):
    self.text = self.extract_text_from_pdf(self.file_path)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=150,
        chunk_overlap=20,
        length_function=self.token_len,
        separators=["Section", "\n\n", "\n", ".", " ", ""]
    )

    self.chunks = text_splitter.split_text(self.text)

  def load_context_embeddings(self):
    encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=300).to(device)

    with torch.no_grad():
      model_output = self.context_model(**encoded_input)
      self.token_embeddings = model_output.pooler_output.cpu().detach().numpy()

    self.index = faiss.IndexFlatL2(self.token_embeddings.shape[1])
    self.index.add(self.token_embeddings)

  def retrieve_top_k(self, query_prompt, k=10):
    encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", truncation=True, padding=True).to(device)

    with torch.no_grad():
        model_output = self.question_model(**encoded_query)
        query_vector = model_output.pooler_output

    query_vector_np = query_vector.cpu().numpy()
    D, I = self.index.search(query_vector_np, k)

    retrieved_texts = [' '.join(self.chunks[i].split('\n')) for i in I[0]]  # Replacing newlines with spaces

    return retrieved_texts

class RAG:
    def __init__(self,
                 file_path,
                 device,
                 context_model_name="facebook/dpr-ctx_encoder-multiset-base",
                 question_model_name="facebook/dpr-question_encoder-multiset-base",
                 generator_name="facebook/bart-large"):

      # generator_name = "valhalla/bart-large-finetuned-squadv1"
      # generator_name = "'vblagoje/bart_lfqa'"
      # generator_name = "a-ware/bart-squadv2"

      generator_name = "valhalla/bart-large-finetuned-squadv1"
      self.generator_tokenizer = AutoTokenizer.from_pretrained(generator_name)
      self.generator_model = BartForQuestionAnswering.from_pretrained(generator_name).to(device)

      self.retriever = Retriever(file_path, device, context_model_name, question_model_name)
      self.retriever.load_chunks()
      self.retriever.load_context_embeddings()


    def abstractive_query(self, question):
      self.generator_tokenizer = BartTokenizer.from_pretrained(generator_name)
      self.generator_model = BartForConditionalGeneration.from_pretrained(generator_name).to(device)
      context = self.retriever.retrieve_top_k(question, k=5)
      # input_text = question + " " + " ".join(context)

      input_text = "answer: " + " ".join(context) + " " + question

      inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=500, truncation=True).to(device)
      outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)

      answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
      return answer

    def extractive_query(self, question):
      context = self.retriever.retrieve_top_k(question, k=15)
      
      
      inputs = self.generator_tokenizer(question, ". ".join(context), return_tensors="pt", truncation=True, max_length=300, padding="max_length")
      with torch.no_grad():
        model_inputs = inputs.to(device)
        outputs = self.generator_model(**model_inputs)

      answer_start_index = outputs.start_logits.argmax()
      answer_end_index = outputs.end_logits.argmax()

      if answer_end_index < answer_start_index:
        answer_start_index, answer_end_index = answer_end_index, answer_start_index

      predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
      answer = self.generator_tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
      answer = answer.replace('\n', ' ').strip()
      answer = answer.replace('$', '')

      return answer

context_model_name="facebook/dpr-ctx_encoder-single-nq-base"
question_model_name = "facebook/dpr-question_encoder-single-nq-base"

rag = RAG(file_path, device)

st.title("RAG Model Query Interface Chatbot")

# Initialize session state to keep track of the list of answers and questions
if 'history' not in st.session_state:
    st.session_state['history'] = []

question = st.text_input("Enter your question:")

if st.button("Ask"):
    # Fetch the answer for the question
    answer = rag.extractive_query(question)
    
    # Add the question and its answer to the history
    st.session_state.history.append({"type": "question", "content": question})
    st.session_state.history.append({"type": "answer", "content": answer})

# Display the chat history
for item in st.session_state.history:
    if item["type"] == "question":
        st.write(f"πŸ§‘ You: {item['content']}")
    else:
        st.write(f"πŸ€– Bot: {item['content']}")