RAG / app.py
rtabrizi's picture
Update app.py
edbedf3
raw
history blame
6.9 kB
import streamlit as st
import torch
import numpy as np
import faiss
import PyPDF2
import os
import langchain
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, BartForQuestionAnswering
from transformers import BartForConditionalGeneration, BartTokenizer, AutoTokenizer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from streamlit import runtime
runtime.exists()
device = torch.device("cpu")
if torch.cuda.is_available():
print("Training on GPU")
device = torch.device("cuda:0")
file_url = "https://arxiv.org/pdf/1706.03762.pdf"
file_path = "assets/attention.pdf"
if not os.path.exists('assets'):
os.mkdir('assets')
if not os.path.isfile(file_path):
os.system(f'curl -o {file_path} {file_url}')
else:
print("File already exists!")
class Retriever:
def __init__(self, file_path, device, context_model_name, question_model_name):
self.file_path = file_path
self.device = device
self.context_tokenizer = DPRContextEncoderTokenizer.from_pretrained(context_model_name)
self.context_model = DPRContextEncoder.from_pretrained(context_model_name).to(device)
self.question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(question_model_name)
self.question_model = DPRQuestionEncoder.from_pretrained(question_model_name).to(device)
def token_len(self, text):
tokens = self.context_tokenizer.encode(text)
return len(tokens)
def extract_text_from_pdf(self, file_path):
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def get_text(self):
with open(self.file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def load_chunks(self):
self.text = self.extract_text_from_pdf(self.file_path)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=150,
chunk_overlap=20,
length_function=self.token_len,
separators=["Section", "\n\n", "\n", ".", " ", ""]
)
self.chunks = text_splitter.split_text(self.text)
def load_context_embeddings(self):
encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=300).to(device)
with torch.no_grad():
model_output = self.context_model(**encoded_input)
self.token_embeddings = model_output.pooler_output.cpu().detach().numpy()
self.index = faiss.IndexFlatL2(self.token_embeddings.shape[1])
self.index.add(self.token_embeddings)
def retrieve_top_k(self, query_prompt, k=10):
encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
model_output = self.question_model(**encoded_query)
query_vector = model_output.pooler_output
query_vector_np = query_vector.cpu().numpy()
D, I = self.index.search(query_vector_np, k)
retrieved_texts = [' '.join(self.chunks[i].split('\n')) for i in I[0]] # Replacing newlines with spaces
scores = [d for d in D[0]]
return retrieved_texts
class RAG:
def __init__(self,
file_path,
device,
context_model_name="facebook/dpr-ctx_encoder-multiset-base",
question_model_name="facebook/dpr-question_encoder-multiset-base",
generator_name="facebook/bart-large"):
# generator_name = "valhalla/bart-large-finetuned-squadv1"
# generator_name = "'vblagoje/bart_lfqa'"
# generator_name = "a-ware/bart-squadv2"
self.generator_tokenizer = BartTokenizer.from_pretrained(generator_name)
self.generator_model = BartForConditionalGeneration.from_pretrained(generator_name).to(device)
# generator_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
# generator_name = "t5-small"
# self.generator_tokenizer = T5Tokenizer.from_pretrained(generator_name)
# self.generator_model = T5ForConditionalGeneration.from_pretrained(generator_name)
self.retriever = Retriever(file_path, device, context_model_name, question_model_name)
self.retriever.load_chunks()
self.retriever.load_context_embeddings()
def abstractive_query(self, question):
context = self.retriever.retrieve_top_k(question, k=5)
# input_text = question + " " + " ".join(context)
input_text = "answer: " + " ".join(context) + " " + question
print(input_text)
inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=1024, truncation=True).to(device)
outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)
answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def extractive_query(self, question):
context = self.retriever.retrieve_top_k(question, k=15)
generator_name = "valhalla/bart-large-finetuned-squadv1"
self.generator_tokenizer = AutoTokenizer.from_pretrained(generator_name)
self.generator_model = BartForQuestionAnswering.from_pretrained(generator_name).to(device)
inputs = self.generator_tokenizer(question, ". ".join(context), return_tensors="pt", truncation=True, max_length=200 , padding="max_length")
with torch.no_grad():
model_inputs = inputs.to(device)
outputs = self.generator_model(**model_inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
if answer_end_index < answer_start_index:
answer_start_index, answer_end_index = answer_end_index, answer_start_index
print(answer_start_index, answer_end_index)
predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
answer = self.generator_tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
answer = answer.replace('\n', ' ').strip()
answer = answer.replace('$', '')
return answer
context_model_name="facebook/dpr-ctx_encoder-single-nq-base"
question_model_name = "facebook/dpr-question_encoder-single-nq-base"
# context_model_name="facebook/dpr-ctx_encoder-multiset-base"
# question_model_name="facebook/dpr-question_encoder-multiset-base"
rag = RAG(file_path, device)
st.title("RAG Model Query Interface")
# offer to ask a question and get an answer. make it so they can ask as many questions as they want
question = st.text_input("Ask a question", "What is another name for self-attention?")
if st.button("Ask"):
answer = rag.extractive_query(question)
st.write(answer)