Update app.py
Browse files
app.py
CHANGED
@@ -76,7 +76,7 @@ class Retriever:
|
|
76 |
self.chunks = text_splitter.split_text(self.text)
|
77 |
|
78 |
def load_context_embeddings(self):
|
79 |
-
encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=
|
80 |
|
81 |
with torch.no_grad():
|
82 |
model_output = self.context_model(**encoded_input)
|
@@ -86,7 +86,7 @@ class Retriever:
|
|
86 |
self.index.add(self.token_embeddings)
|
87 |
|
88 |
def retrieve_top_k(self, query_prompt, k=10):
|
89 |
-
encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", max_length=
|
90 |
|
91 |
with torch.no_grad():
|
92 |
model_output = self.question_model(**encoded_query)
|
@@ -128,7 +128,7 @@ class RAG:
|
|
128 |
|
129 |
input_text = "answer: " + " ".join(context) + " " + question
|
130 |
|
131 |
-
inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=
|
132 |
outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)
|
133 |
|
134 |
answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -138,7 +138,7 @@ class RAG:
|
|
138 |
context = self.retriever.retrieve_top_k(question, k=15)
|
139 |
|
140 |
|
141 |
-
inputs = self.generator_tokenizer(question, ". ".join(context), return_tensors="pt", truncation=True, max_length=
|
142 |
with torch.no_grad():
|
143 |
model_inputs = inputs.to(device)
|
144 |
outputs = self.generator_model(**model_inputs)
|
|
|
76 |
self.chunks = text_splitter.split_text(self.text)
|
77 |
|
78 |
def load_context_embeddings(self):
|
79 |
+
encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=150).to(device)
|
80 |
|
81 |
with torch.no_grad():
|
82 |
model_output = self.context_model(**encoded_input)
|
|
|
86 |
self.index.add(self.token_embeddings)
|
87 |
|
88 |
def retrieve_top_k(self, query_prompt, k=10):
|
89 |
+
encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", max_length=150, truncation=True, padding=True).to(device)
|
90 |
|
91 |
with torch.no_grad():
|
92 |
model_output = self.question_model(**encoded_query)
|
|
|
128 |
|
129 |
input_text = "answer: " + " ".join(context) + " " + question
|
130 |
|
131 |
+
inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=150, truncation=True).to(device)
|
132 |
outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)
|
133 |
|
134 |
answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
138 |
context = self.retriever.retrieve_top_k(question, k=15)
|
139 |
|
140 |
|
141 |
+
inputs = self.generator_tokenizer(question, ". ".join(context), return_tensors="pt", truncation=True, max_length=150, padding="max_length")
|
142 |
with torch.no_grad():
|
143 |
model_inputs = inputs.to(device)
|
144 |
outputs = self.generator_model(**model_inputs)
|