File size: 5,144 Bytes
2537e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695b2a1
2537e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from openai import AsyncAssistantEventHandler
from openai import AsyncOpenAI
import gradio as gr
import asyncio
import os

# set the keys
client = AsyncOpenAI(
  api_key=os.getenv("OPENAI_API_KEY")
)

assistantID = os.getenv("OPENAI_ASSISTANT_ID")
username = os.getenv("YOUR_ID")
password = os.getenv("YOUR_PASSWORD")

mytitle = "<h1 align=center>RTL AI News Reader : What happened in the country πŸ‡±πŸ‡Ί and in the world 🌎 ?</h1>"

mydescription="""
<h3 align='center'>Which topic interests you : 🐢 πŸƒπŸ»β€β™‚οΈ πŸŒ— πŸ‡ 🌈 🍽️ πŸ† 🚘 ✈️ 🩺 </h3>
<table width=100%>
  <tr>
    <th width=50% bgcolor="Moccasin">Ask your questions in Luxembourgish or another language :</th>
    <th bgcolor="Khaki">Response from the OpenAI File-Search Assistant :</th>
  </tr>
</table>
"""

myarticle ="""
<h3>Background :</h3>
<p>This HuggingFace Space demo was created by <a href="https://github.com/mbarnig">Marco Barnig</a>.As an artificial intelligence,
the <a href="https://platform.openai.com/docs/models">OpenAI model</a> gpt-4o-mini-2024-07-18 is used via API,
which can utilize up to 128,000 tokens as context, provide an answer to a question with a maximum of 16,384 tokens, 
and process up to 200,000 tokens per minute (TPM). All english content from RTL.lu from the beginning up to September 2024 has been split into 16 JSON files
and uploaded to a Vector Store by the OpenAI File-Search Assistant "RTL English News Reader." 
Each file contains fewer than 5 million tokens, which is an upper limit for the AI model. It is possible to upload up to 10,000 files to an OpenAI Assistant.
The responses of the examples are cached and therefore displayed without delay.</p>
"""

myinput = gr.Textbox(lines=3, label=" What would you like to know ?")

myexamples = [
"What happened in 2014 ?"
]

class EventHandler(AsyncAssistantEventHandler):
    def __init__(self) -> None:
        super().__init__()
        self.response_text = ""

    async def on_text_created(self, text) -> None:
        self.response_text += str(text)

    async def on_text_delta(self, delta, snapshot):
        self.response_text += str(delta.value)

    async def on_text_done(self, text):
        pass

    async def on_tool_call_created(self, tool_call):
        self.response_text += f"\n[Tool Call]: {str(tool_call.type)}\n"

    async def on_tool_call_delta(self, delta, snapshot):
        if snapshot.id != getattr(self, "current_tool_call", None):
            self.current_tool_call = snapshot.id
            self.response_text += f"\n[Tool Call Delta]: {str(delta.type)}\n"

        if delta.type == 'code_interpreter':
            if delta.code_interpreter.input:
                self.response_text += str(delta.code_interpreter.input)
            if delta.code_interpreter.outputs:
                self.response_text += "\n\n[Output]:\n"
                for output in delta.code_interpreter.outputs:
                    if output.type == "logs":
                        self.response_text += f"\n{str(output.logs)}"

    async def on_tool_call_done(self, text):
        pass

# Initialize session variables
session_data = {"assistant_id": assistantID, "thread_id": None}

async def initialize_thread():
    # Create a Thread
    thread = await client.beta.threads.create()
    # Store thread ID in session_data for later use
    session_data["thread_id"] = thread.id

async def generate_response(user_input):
    assistant_id = session_data["assistant_id"]
    thread_id = session_data["thread_id"]

    # Add a Message to the Thread
    oai_message = await client.beta.threads.messages.create(
        thread_id=thread_id,
        role="user",
        content=user_input
    )

    # Create and Stream a Run
    event_handler = EventHandler()

    async with client.beta.threads.runs.stream(
        thread_id=thread_id,
        assistant_id=assistant_id,
        instructions="Please assist the user with their query.",
        event_handler=event_handler,
    ) as stream:
        # Yield incremental updates
        async for _ in stream:
            await asyncio.sleep(0.1)  # Small delay to mimic streaming
            yield event_handler.response_text

# Gradio interface function (generator)
async def gradio_chat_interface(user_input):
    # Create a new event loop if none exists (or if we are in a new thread)
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)

    # Initialize the thread if not already done
    if session_data["thread_id"] is None:
        await initialize_thread()

    # Generate and yield responses
    async for response in generate_response(user_input):
        yield response

# Set up Gradio interface with streaming
interface = gr.Interface(
    fn=gradio_chat_interface,
    inputs=myinput,
    outputs="markdown",
    title=mytitle,
    description=mydescription,
    article=myarticle,
    live=False,
    allow_flagging="never",
    examples=myexamples
)

# Launch the Gradio app
interface.launch(auth=(username, password), auth_message="<h1>Lecteur de nouvelles IA de RTL</h1><p>Ce HuggingFace