Spaces:
Sleeping
Sleeping
File size: 5,642 Bytes
08b8fe3 80c8ef8 08b8fe3 80c8ef8 89a922c 80c8ef8 08b8fe3 80c8ef8 6ecbc31 80c8ef8 89a922c 80c8ef8 89a922c 80c8ef8 26bbd7c 80c8ef8 89a922c 80c8ef8 2127c71 80c8ef8 26bbd7c 2127c71 80c8ef8 2127c71 80c8ef8 359020a 80c8ef8 89a922c 80c8ef8 89a922c 80c8ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from openai import AsyncAssistantEventHandler
from openai import AsyncOpenAI
import gradio as gr
import asyncio
import os
# set the keys
client = AsyncOpenAI(
api_key=os.getenv("OPENAI_API_KEY")
)
assistantID = os.getenv("OPENAI_ASSISTANT_ID")
mypassword = os.getenv("RTL_PASSWORD")
class EventHandler(AsyncAssistantEventHandler):
def __init__(self) -> None:
super().__init__()
self.response_text = ""
async def on_text_created(self, text) -> None:
self.response_text += str(text)
async def on_text_delta(self, delta, snapshot):
self.response_text += str(delta.value)
async def on_text_done(self, text):
pass
async def on_tool_call_created(self, tool_call):
self.response_text += f"\n[Tool Call]: {str(tool_call.type)}\n"
async def on_tool_call_delta(self, delta, snapshot):
if snapshot.id != getattr(self, "current_tool_call", None):
self.current_tool_call = snapshot.id
self.response_text += f"\n[Tool Call Delta]: {str(delta.type)}\n"
if delta.type == 'code_interpreter':
if delta.code_interpreter.input:
self.response_text += str(delta.code_interpreter.input)
if delta.code_interpreter.outputs:
self.response_text += "\n\n[Output]:\n"
for output in delta.code_interpreter.outputs:
if output.type == "logs":
self.response_text += f"\n{str(output.logs)}"
async def on_tool_call_done(self, text):
pass
# Initialize session variables
session_data = {"assistant_id": assistantID, "thread_id": None}
async def initialize_thread():
# Create a Thread
thread = await client.beta.threads.create()
# Store thread ID in session_data for later use
session_data["thread_id"] = thread.id
async def generate_response(user_input):
if user_input == "":
yield "Veuillez soumettre une question !"
else:
assistant_id = session_data["assistant_id"]
thread_id = session_data["thread_id"]
# Add a Message to the Thread
oai_message = await client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=user_input
)
# Create and Stream a Run
event_handler = EventHandler()
async with client.beta.threads.runs.stream(
thread_id=thread_id,
assistant_id=assistant_id,
instructions="Please assist the user with their query.",
event_handler=event_handler,
) as stream:
# Yield incremental updates
async for _ in stream:
await asyncio.sleep(0.1) # Small delay to mimic streaming
yield event_handler.response_text
# Gradio interface function (generator)
async def gradio_chat_interface(mode, password, user_input, example):
if mode == "Exemples":
filename = example[-6:-2] + ".md"
file = open("examples/" + filename, "r")
output = file.read()
yield output
else:
# check the password
if password == "":
yield "Pour faire des recherches vous devez entrer un mot de passe !"
elif password != mypassword:
yield "Veuillez entrer le mot de passe correct !"
else:
# Create a new event loop if none exists (or if we are in a new thread)
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Initialize the thread if not already done
if session_data["thread_id"] is None:
await initialize_thread()
# Generate and yield responses
async for response in generate_response(user_input):
yield response
with gr.Blocks() as demo:
with gr.Row():
myTitle = gr.HTML("<h2 align=center>RTL French AI News Reader : Quels événements ont eu lieu dans le Grand-Duché 🇱🇺 ou dans le monde 🌎 ?</h2>")
with gr.Row():
myDescription = gr.HTML("""
<h3 align='center'>Quel sujet vous intéresse ?</h3>
<p align='center'>🐶 🏃🏻♂️ 🌗 🍇 🌈 🍽️ 🏆 🚘 ✈️ 🩺 </p>
<p align='center' bgcolor="Moccasin">Veuillez soumettre votre question en français ou dans une autre langue !</p>
"""
)
with gr.Row():
mode = gr.Radio(choices=["Recherche", "Exemples"], label = "Vous pouvez lire les exemples sans mots de passe !", value = "Exemples")
pw = gr.Textbox(lines=1, label="Veuillez entrer le mot de passe :")
with gr.Row():
question = gr.Textbox(lines=3, label="Veuillez soumettre votre question :")
with gr.Row():
examples = gr.Radio(["Prière d'établir la liste des meilleurs sportifs luxembourgeois votés par le public entre 2014 et 2023 !", "Quelle évolution a eu lieu dans le domaine de la protection de la nature pendant les dix dernières années ?"], value="Prière d'établir la liste des meilleurs sportifs luxembourgeois votés par le public entre 2014 et 2023 !", label="Exemples")
with gr.Row():
clear = gr.Button("Clear")
submit = gr.Button("Submit")
with gr.Row():
mySubtitle = gr.HTML("<p align='center' bgcolor='Khaki'>French RTL News :</p>")
with gr.Row():
myOutput = gr.Markdown(label="Réponses de l'assistant OpenAI File-Search :")
submit.click(fn = gradio_chat_interface, inputs=[mode, pw, question, examples], outputs = myOutput)
demo.launch() |