Spaces:
Runtime error
Runtime error
ruanchaves
commited on
Commit
·
69f0559
1
Parent(s):
c69e84b
fix
Browse files- app.py +37 -30
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
-
|
5 |
from collections import Counter
|
6 |
|
7 |
def most_frequent(array):
|
@@ -42,14 +42,14 @@ exibindo a relação entre os pares textuais.)
|
|
42 |
score_descriptions = {
|
43 |
1: "There is an entailment relation between premise and hypothesis. If the premise is true, then the hypothesis must also be true.",
|
44 |
0: "There is no logical relation between the premise and the hypothesis.",
|
45 |
-
2: "
|
46 |
}
|
47 |
|
48 |
|
49 |
score_descriptions_pt = {
|
50 |
1: "(Existe uma relação de implicação entre premissa e hipótese. Se a premissa é verdadeira, então a hipótese também deve ser verdadeira.)",
|
51 |
0: "(Não há relação lógica entre a premissa e a hipótese.)",
|
52 |
-
2: "(
|
53 |
}
|
54 |
|
55 |
score_short_keys = {
|
@@ -77,6 +77,11 @@ user_friendly_name = {
|
|
77 |
"ruanchaves/bert-large-portuguese-cased-assin-entailment": "BERTimbau large (ASSIN)"
|
78 |
}
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
model_array = []
|
81 |
|
82 |
for model_name in model_list:
|
@@ -87,45 +92,47 @@ for model_name in model_list:
|
|
87 |
model_array.append(row)
|
88 |
|
89 |
|
90 |
-
def
|
|
|
|
|
91 |
scores = {}
|
|
|
92 |
for row in model_array:
|
93 |
-
name =
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
for
|
112 |
-
|
113 |
-
|
114 |
-
return final_description, scores
|
115 |
|
116 |
|
117 |
inputs = [
|
118 |
gr.inputs.Textbox(label="Premise"),
|
119 |
-
gr.inputs.Textbox(label="Hypothesis")
|
|
|
120 |
]
|
121 |
|
122 |
outputs = [
|
123 |
-
gr.
|
124 |
-
gr.JSON(label="Results by model", value=output_json_component_description)
|
125 |
]
|
126 |
|
127 |
|
128 |
-
gr.Interface(fn=
|
129 |
description=app_description,
|
130 |
examples=app_examples,
|
131 |
article = article_string).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
+
from scipy.special import softmax
|
5 |
from collections import Counter
|
6 |
|
7 |
def most_frequent(array):
|
|
|
42 |
score_descriptions = {
|
43 |
1: "There is an entailment relation between premise and hypothesis. If the premise is true, then the hypothesis must also be true.",
|
44 |
0: "There is no logical relation between the premise and the hypothesis.",
|
45 |
+
2: "The premise is a paraphrase of the hypothesis."
|
46 |
}
|
47 |
|
48 |
|
49 |
score_descriptions_pt = {
|
50 |
1: "(Existe uma relação de implicação entre premissa e hipótese. Se a premissa é verdadeira, então a hipótese também deve ser verdadeira.)",
|
51 |
0: "(Não há relação lógica entre a premissa e a hipótese.)",
|
52 |
+
2: "(A premissa é uma paráfrase da hipótese.)"
|
53 |
}
|
54 |
|
55 |
score_short_keys = {
|
|
|
77 |
"ruanchaves/bert-large-portuguese-cased-assin-entailment": "BERTimbau large (ASSIN)"
|
78 |
}
|
79 |
|
80 |
+
reverse_user_friendly_name = { v:k for k,v in user_friendly_name.items() }
|
81 |
+
|
82 |
+
user_friendly_name_list = list(user_friendly_name.values())
|
83 |
+
|
84 |
+
|
85 |
model_array = []
|
86 |
|
87 |
for model_name in model_list:
|
|
|
92 |
model_array.append(row)
|
93 |
|
94 |
|
95 |
+
def predict(s1, s2, chosen_model):
|
96 |
+
if not chosen_model:
|
97 |
+
chosen_model = user_friendly_name_list[0]
|
98 |
scores = {}
|
99 |
+
full_chosen_model_name = reverse_user_friendly_name[chosen_model]
|
100 |
for row in model_array:
|
101 |
+
name = row["name"]
|
102 |
+
if name != full_chosen_model_name:
|
103 |
+
continue
|
104 |
+
else:
|
105 |
+
tokenizer = row["tokenizer"]
|
106 |
+
model = row["model"]
|
107 |
+
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
|
108 |
+
with torch.no_grad():
|
109 |
+
output = model(**model_input)
|
110 |
+
logits = output[0][0].detach().numpy()
|
111 |
+
logits = softmax(logits).tolist()
|
112 |
+
break
|
113 |
+
def get_description(idx):
|
114 |
+
description = score_descriptions[idx]
|
115 |
+
description_pt = score_descriptions_pt[idx]
|
116 |
+
final_description = description + "\n \n" + description_pt
|
117 |
+
return final_description
|
118 |
+
|
119 |
+
scores = { get_description(k):v for k,v in enumerate(logits) }
|
120 |
+
|
121 |
+
return scores
|
|
|
122 |
|
123 |
|
124 |
inputs = [
|
125 |
gr.inputs.Textbox(label="Premise"),
|
126 |
+
gr.inputs.Textbox(label="Hypothesis"),
|
127 |
+
gr.Dropdown(label="Model", choices=user_friendly_name_list, default=user_friendly_name_list[0])
|
128 |
]
|
129 |
|
130 |
outputs = [
|
131 |
+
gr.Label(label="Result")
|
|
|
132 |
]
|
133 |
|
134 |
|
135 |
+
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
|
136 |
description=app_description,
|
137 |
examples=app_examples,
|
138 |
article = article_string).launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
torch
|
2 |
gradio
|
3 |
-
transformers
|
|
|
|
1 |
torch
|
2 |
gradio
|
3 |
+
transformers
|
4 |
+
scipy
|