File size: 12,608 Bytes
d07bb49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import openai
import sys
import re

import gradio as gr
from IPython import get_ipython
import json
import requests
from tenacity import retry, wait_random_exponential, stop_after_attempt
from IPython import get_ipython
# from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯
import ast

GPT_MODEL = "gpt-3.5-turbo-1106"

openai.api_key  = os.environ['OPENAI_API_KEY']

def exec_python(cell):
    # result = 0
    print(cell)
    # print(type(cell))
    # code = json.loads(cell)
    # print(code)
    # exec(code["cell"])
    inputcode = cell
    print(inputcode)
    code = inputcode
    # code_string = code["cell"]
    local_namespace = {}
    try:
        exec(code, globals(), local_namespace)
    except Exception as e:
        return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
    print(local_namespace)
    if not local_namespace:
        return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
    else:
        theanswers = local_namespace.values()
        print(theanswers)
        local_ans = list(theanswers)[-1]
        print(local_ans)
        return local_ans

# Now let's define the function specification:
functions = [
    {
           "name": "exec_python",
            "description": "run python code and return the execution result.",
            "parameters": {
                "type": "object",
                "properties": {
                    "cell": {
                        "type": "string",
                        "description": "Valid Python code to execute.",
                    }
                },
                "required": ["cell"],
            },
    },
]

# In order to run these functions automatically, we should maintain a dictionary:
functions_dict = {
    "exec_python": exec_python,
}

def openai_api_calculate_cost(usage,model):
    pricing = {
        # 'gpt-3.5-turbo-4k': {
        #     'prompt': 0.0015,
        #     'completion': 0.002,
        # },
        # 'gpt-3.5-turbo-16k': {
        #     'prompt': 0.003,
        #     'completion': 0.004,
        # },
        'gpt-3.5-turbo-1106': {
            'prompt': 0.001,
            'completion': 0.002,
        },
        'gpt-4-1106-preview': {
            'prompt': 0.01,
            'completion': 0.03,
        },
        'gpt-4': {
            'prompt': 0.03,
            'completion': 0.06,
        },
        # 'gpt-4-32k': {
        #     'prompt': 0.06,
        #     'completion': 0.12,
        # },
        # 'text-embedding-ada-002-v2': {
        #     'prompt': 0.0001,
        #     'completion': 0.0001,
        # }
    }

    try:
        model_pricing = pricing[model]
    except KeyError:
        raise ValueError("Invalid model specified")

    prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
    completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000

    total_cost = prompt_cost + completion_cost
    print(f"\nTokens used:  {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
    print(f"Total cost for {model}: ${total_cost:.4f}\n")

    return total_cost


@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, model, functions=None, function_call=None, temperature=0.2, top_p=0.1):
    """
    This function sends a POST request to the OpenAI API to generate a chat completion.
    Parameters:
    - messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
      (the content of the message).
    - functions (list, optional): A list of function objects that describe the functions that the model can call.
    - function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
      (the model will not call a function). If it's a dict, it should describe the function to call.
    - model (str): The ID of the model to use.
    Returns:
    - response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
    """

    # Set up the headers for the API request
    headers = {
        "Content-Type": "application/json",
        "Authorization": "Bearer " + openai.api_key,
    }

    # Set up the data for the API request
    # json_data = {"model": model, "messages": messages}
    # json_data = {"model": model, "messages": messages, "response_format":{"type": "json_object"}}
    json_data = {"model": model, "messages": messages, "temperature": temperature, "top_p":top_p}

    # If functions were provided, add them to the data
    if functions is not None:
        json_data.update({"functions": functions})

    # If a function call was specified, add it to the data
    if function_call is not None:
        json_data.update({"function_call": function_call})

    # Send the API request
    try:
        response = requests.post(
            "https://api.openai.com/v1/chat/completions",
            headers=headers,
            json=json_data,
        )
        return response
    except Exception as e:
        print("Unable to generate ChatCompletion response")
        print(f"Exception: {e}")
        return e

def first_call(init_prompt, user_input, input_temperature, input_top_p, model_dropdown_1):
  # Set up a conversation
  messages = []
  messages.append({"role": "system", "content": init_prompt})

  # Write a user message that perhaps our function can handle...?
  messages.append({"role": "user", "content": user_input})

  # Generate a response
  chat_response = chat_completion_request(
      messages, model_dropdown_1, functions=functions, function_call='auto', temperature=float(input_temperature), top_p=float(input_top_p)
  )


  # Save the JSON to a variable

  assistant_message = chat_response.json()["choices"][0]["message"]

  # Append response to conversation
  messages.append(assistant_message)

  usage = chat_response.json()['usage']
  cost1 = openai_api_calculate_cost(usage,model_dropdown_1)

  finish_response_status = chat_response.json()["choices"][0]["finish_reason"]
  # Let's see what we got back before continuing
  return assistant_message, cost1, messages, finish_response_status

def is_valid_dict_string(s):
    try:
        ast.literal_eval(s)
        return True
    except (SyntaxError, ValueError):
        return False

def function_call_process(assistant_message):
  if assistant_message.get("function_call") != None:

    # Retrieve the name of the relevant function
    function_name = assistant_message["function_call"]["name"]

    # Retrieve the arguments to send the function
    # function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)

    # if isinstance(assistant_message["function_call"]["arguments"], dict):
    #   arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
    # else:
    #   arg_dict =  {'cell': assistant_message["function_call"]["arguments"]}
    # arg_dict = assistant_message["function_call"]["arguments"]
    # print(function_args)

    if is_valid_dict_string(assistant_message["function_call"]["arguments"])==True:
      arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
      arg_dict = arg_dict['cell']
      print("arg_dict : " + arg_dict)
    else:
      arg_dict = assistant_message["function_call"]["arguments"]
      print(arg_dict)

    # Look up the function and call it with the provided arguments
    result = functions_dict[function_name](arg_dict)
    return result

    # print(result)
def second_prompt_build(prompt, log):
  prompt_second = prompt.format(ans = log)
  # prompt_second = prompt % log
  return prompt_second

def second_call(prompt, prompt_second, messages, model_dropdown_2, function_name = "exec_python"):
  # Add a new message to the conversation with the function result
  messages.append({
      "role": "function",
      "name": function_name,
      "content": str(prompt_second),  # Convert the result to a string
  })

  # Call the model again to generate a user-facing message based on the function result
  chat_response = chat_completion_request(
      messages, model_dropdown_2, functions=functions
  )
  print("second call : "+ str(chat_response.json()))
  assistant_message = chat_response.json()["choices"][0]["message"]
  messages.append(assistant_message)

  usage = chat_response.json()['usage']
  cost2 = openai_api_calculate_cost(usage,model_dropdown_2)

  # Print the final conversation
  # pretty_print_conversation(messages)
  return assistant_message, cost2, messages

def format_math_in_sentence(sentence):
    # Regular expression to find various math expressions
    math_pattern = re.compile(r'\\[a-zA-Z]+\{[^\}]+\}|\\frac\{[^\}]+\}\{[^\}]+\}')

    # Find all math expressions in the sentence
    math_matches = re.findall(math_pattern, sentence)

    # Wrap each math expression with Markdown formatting
    for math_match in math_matches:
        markdown_math = f"${math_match}$"
        sentence = sentence.replace(math_match, markdown_math)

    return sentence

def main_function(init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2):
    first_call_result, cost1, messages, finish_response_status = first_call(init_prompt, user_input, input_temperature_1, input_top_p_1, model_dropdown_1)
    print("finish_response_status "+finish_response_status)
    print(messages)
    if finish_response_status == 'stop':
        function_call_process_result = "Tidak dipanggil"
        second_prompt_build_result = "Tidak dipanggil"
        second_call_result = {'status':'Tidak dipanggil'}
        cost2 = 0
        finalmessages = {'status':'Tidak dipanggil'}
        finalcostresult = cost1
        finalcostrpresult = finalcostresult * 15000
    else:
        function_call_process_result = function_call_process(first_call_result)
        second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
        second_call_result, cost2, finalmessages = second_call(second_prompt_build_result, function_call_process_result, messages, model_dropdown_2)
        finalcostresult = cost1 + cost2
        finalcostrpresult = finalcostresult * 15000
    veryfinaloutput = format_math_in_sentence(str(finalmessages[-1].get("content", "")))
    return first_call_result, function_call_process_result, second_prompt_build_result, second_call_result, cost1, cost2, finalmessages, finalcostresult, finalcostrpresult, veryfinaloutput

def gradio_function():
    init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
    prompt = gr.Textbox(label="prompt (for 2nd call)")
    user_input = gr.Textbox(label="User Input")
    input_temperature_1 = gr.Textbox(label="temperature_1")
    input_top_p_1 = gr.Textbox(label="top_p_1")
    # input_temperature_2 = gr.Textbox(label="temperature_2")
    # input_top_p_2 = gr.Textbox(label="top_p_2")
    output_1st_call = gr.JSON(label="Assistant (output_1st_call)")
    output_fc_call = gr.Textbox(label="Function Call (exec_python) Result (output_fc_call)")
    output_fc_call_with_prompt = gr.Textbox(label="Building 2nd Prompt (output_fc_call_with_2nd_prompt)")
    output_2nd_call = gr.JSON(label="Assistant (output_2nd_call_buat_user)")
    cost = gr.Textbox(label="Cost 1")
    cost2 = gr.Textbox(label="Cost 2")
    finalcost = gr.Textbox(label="Final Cost ($)")
    finalcostrp = gr.Textbox(label="Final Cost (Rp)")
    finalmessages = gr.JSON(label="Final Messages")
    model_dropdown_1 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 1", info="Pilih model 1!")
    model_dropdown_2 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 2", info="Pilih model 2!")
    prettieroutput = gr.Markdown()

    iface = gr.Interface(
        fn=main_function,
        inputs=[init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2],
        outputs=[output_1st_call, output_fc_call, output_fc_call_with_prompt, output_2nd_call, cost, cost2, finalmessages, finalcost, finalcostrp, prettieroutput],
        title="Test",
        description="Accuracy",
    )

    iface.launch(share=True, debug=True)

if __name__ == "__main__":
    gradio_function()