RickyIG commited on
Commit
26b2884
·
1 Parent(s): 0e4c90b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +245 -0
app.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import openai
3
+ import sys
4
+
5
+ import gradio as gr
6
+ from IPython import get_ipython
7
+ import json
8
+ import requests
9
+ from tenacity import retry, wait_random_exponential, stop_after_attempt
10
+ from IPython import get_ipython
11
+ # from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯
12
+
13
+ GPT_MODEL = "gpt-3.5-turbo-1106"
14
+
15
+ openai.api_key = os.environ['OPENAI_API_KEY']
16
+
17
+ messages=[]
18
+
19
+ def exec_python(cell):
20
+ ipython = get_ipython()
21
+ print(ipython)
22
+ result = ipython.run_cell(cell)
23
+ log = str(result.result)
24
+ if result.error_before_exec is not None:
25
+ log += f"\n{result.error_before_exec}"
26
+ if result.error_in_exec is not None:
27
+ log += f"\n{result.error_in_exec}"
28
+ prompt = """You are a genius math tutor, Python code expert, and a helpful assistant.
29
+ answer = {ans}
30
+ Please answer user questions very well with explanations and match it with the multiple choices question.
31
+ """.format(ans = log)
32
+ return log
33
+
34
+ # Now let's define the function specification:
35
+ functions = [
36
+ {
37
+ "name": "exec_python",
38
+ "description": "run cell in ipython and return the execution result.",
39
+ "parameters": {
40
+ "type": "object",
41
+ "properties": {
42
+ "cell": {
43
+ "type": "string",
44
+ "description": "Valid Python cell to execute.",
45
+ }
46
+ },
47
+ "required": ["cell"],
48
+ },
49
+ },
50
+ ]
51
+
52
+ # In order to run these functions automatically, we should maintain a dictionary:
53
+ functions_dict = {
54
+ "exec_python": exec_python,
55
+ }
56
+
57
+ def openai_api_calculate_cost(usage,model=GPT_MODEL):
58
+ pricing = {
59
+ # 'gpt-3.5-turbo-4k': {
60
+ # 'prompt': 0.0015,
61
+ # 'completion': 0.002,
62
+ # },
63
+ # 'gpt-3.5-turbo-16k': {
64
+ # 'prompt': 0.003,
65
+ # 'completion': 0.004,
66
+ # },
67
+ 'gpt-3.5-turbo-1106': {
68
+ 'prompt': 0.001,
69
+ 'completion': 0.002,
70
+ },
71
+ # 'gpt-4-1106-preview': {
72
+ # 'prompt': 0.01,
73
+ # 'completion': 0.03,
74
+ # },
75
+ # 'gpt-4-32k': {
76
+ # 'prompt': 0.06,
77
+ # 'completion': 0.12,
78
+ # },
79
+ # 'text-embedding-ada-002-v2': {
80
+ # 'prompt': 0.0001,
81
+ # 'completion': 0.0001,
82
+ # }
83
+ }
84
+
85
+ try:
86
+ model_pricing = pricing[model]
87
+ except KeyError:
88
+ raise ValueError("Invalid model specified")
89
+
90
+ prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
91
+ completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000
92
+
93
+ total_cost = prompt_cost + completion_cost
94
+ print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
95
+ print(f"Total cost for {model}: ${total_cost:.4f}\n")
96
+
97
+ return total_cost
98
+
99
+
100
+ @retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
101
+ def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL):
102
+ """
103
+ This function sends a POST request to the OpenAI API to generate a chat completion.
104
+ Parameters:
105
+ - messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
106
+ (the content of the message).
107
+ - functions (list, optional): A list of function objects that describe the functions that the model can call.
108
+ - function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
109
+ (the model will not call a function). If it's a dict, it should describe the function to call.
110
+ - model (str): The ID of the model to use.
111
+ Returns:
112
+ - response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
113
+ """
114
+
115
+ # Set up the headers for the API request
116
+ headers = {
117
+ "Content-Type": "application/json",
118
+ "Authorization": "Bearer " + openai.api_key,
119
+ }
120
+
121
+ # Set up the data for the API request
122
+ json_data = {"model": model, "messages": messages}
123
+
124
+ # If functions were provided, add them to the data
125
+ if functions is not None:
126
+ json_data.update({"functions": functions})
127
+
128
+ # If a function call was specified, add it to the data
129
+ if function_call is not None:
130
+ json_data.update({"function_call": function_call})
131
+
132
+ # Send the API request
133
+ try:
134
+ response = requests.post(
135
+ "https://api.openai.com/v1/chat/completions",
136
+ headers=headers,
137
+ json=json_data,
138
+ )
139
+ return response
140
+ except Exception as e:
141
+ print("Unable to generate ChatCompletion response")
142
+ print(f"Exception: {e}")
143
+ return e
144
+
145
+ def first_call(init_prompt, user_input):
146
+ # Set up a conversation
147
+ messages = []
148
+ messages.append({"role": "system", "content": init_prompt})
149
+
150
+ # Write a user message that perhaps our function can handle...?
151
+ messages.append({"role": "user", "content": user_input})
152
+
153
+ # Generate a response
154
+ chat_response = chat_completion_request(
155
+ messages, functions=functions
156
+ )
157
+
158
+
159
+ # Save the JSON to a variable
160
+ assistant_message = chat_response.json()["choices"][0]["message"]
161
+
162
+ # Append response to conversation
163
+ messages.append(assistant_message)
164
+
165
+ usage = chat_response.json()['usage']
166
+ cost1 = openai_api_calculate_cost(usage)
167
+
168
+ # Let's see what we got back before continuing
169
+ return assistant_message, cost1
170
+
171
+
172
+ def second_prompt_build(prompt, log):
173
+ prompt_second = prompt.format(ans = log)
174
+ return prompt_second
175
+
176
+ def function_call_process(assistant_message):
177
+ if assistant_message.get("function_call") != None:
178
+
179
+ # Retrieve the name of the relevant function
180
+ function_name = assistant_message["function_call"]["name"]
181
+
182
+ # Retrieve the arguments to send the function
183
+ # function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
184
+ arg_dict = {'cell': assistant_message["function_call"]["arguments"]}
185
+ # print(function_args)
186
+
187
+ # Look up the function and call it with the provided arguments
188
+ result = functions_dict[function_name](**arg_dict)
189
+ return result
190
+
191
+ # print(result)
192
+
193
+ def second_call(prompt, result, function_name = "exec_python"):
194
+ # Add a new message to the conversation with the function result
195
+ messages.append({
196
+ "role": "function",
197
+ "name": function_name,
198
+ "content": str(result), # Convert the result to a string
199
+ })
200
+
201
+ # Call the model again to generate a user-facing message based on the function result
202
+ chat_response = chat_completion_request(
203
+ messages, functions=functions
204
+ )
205
+ assistant_message = chat_response.json()["choices"][0]["message"]
206
+ messages.append(assistant_message)
207
+
208
+ usage = chat_response.json()['usage']
209
+ cost2 = openai_api_calculate_cost(usage)
210
+
211
+ # Print the final conversation
212
+ # pretty_print_conversation(messages)
213
+ return assistant_message, cost2
214
+
215
+
216
+ def main_function(init_prompt, prompt, user_input):
217
+ first_call_result, cost1 = first_call(init_prompt, user_input)
218
+ function_call_process_result = function_call_process(first_call_result)
219
+ second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
220
+ second_call_result, cost2 = second_call(second_prompt_build_result, function_call_process_result)
221
+ return first_call_result, function_call_process_result, second_call_result, cost1, cost2
222
+
223
+ def gradio_function():
224
+ init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
225
+ prompt = gr.Textbox(label="prompt (for 2nd call)")
226
+ user_input = gr.Textbox(label="User Input")
227
+ output_1st_call = gr.Textbox(label="output_1st_call")
228
+ output_fc_call = gr.Textbox(label="output_fc_call")
229
+ output_2nd_call = gr.Textbox(label="output_2nd_call")
230
+ cost = gr.Textbox(label="Cost 1")
231
+ cost2 = gr.Textbox(label="Cost 2")
232
+
233
+
234
+ iface = gr.Interface(
235
+ fn=main_function,
236
+ inputs=[init_prompt, prompt, user_input],
237
+ outputs=[output_1st_call, output_fc_call, output_2nd_call, cost, cost2],
238
+ title="Test",
239
+ description="Accuracy",
240
+ )
241
+
242
+ iface.launch(share=True)
243
+
244
+ if __name__ == "__main__":
245
+ gradio_function()