Spaces:
Sleeping
Sleeping
base gradio
Browse files- app.py +71 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from tensorflow import keras
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import librosa
|
9 |
+
|
10 |
+
|
11 |
+
# Download the model
|
12 |
+
model_path = hf_hub_download(repo_id='ruben09/music_genre_classification', filename='music_genre_model.h5')
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
model = keras.models.load_model(model_path)
|
16 |
+
|
17 |
+
def process_audio(audio_file):
|
18 |
+
map_labels = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"]
|
19 |
+
SR = 22050
|
20 |
+
TD = 30
|
21 |
+
SPT = SR * TD
|
22 |
+
num_segments = 3
|
23 |
+
n_fft=2048
|
24 |
+
hop_length=512
|
25 |
+
|
26 |
+
summed_predictions = np.zeros(len(map_labels))
|
27 |
+
|
28 |
+
sample_per_segment = int(SPT / num_segments)
|
29 |
+
num_spectrogram_per_segment = math.ceil(sample_per_segment / hop_length)
|
30 |
+
|
31 |
+
signal, sr = librosa.load(audio_file, sr=SR)
|
32 |
+
|
33 |
+
for d in range(num_segments):
|
34 |
+
start = sample_per_segment * d
|
35 |
+
finish = start + sample_per_segment
|
36 |
+
|
37 |
+
spectrogram = librosa.feature.mfcc(y=signal[start:finish], sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length)
|
38 |
+
spectrogram_db = spectrogram.T
|
39 |
+
if len(spectrogram_db) == num_spectrogram_per_segment:
|
40 |
+
input_data = np.array(spectrogram_db)
|
41 |
+
input_data = input_data[None,..., np.newaxis]
|
42 |
+
input_data = np.transpose(input_data, (0, 2, 1, 3))
|
43 |
+
prediction = model.predict(input_data)
|
44 |
+
summed_predictions += prediction[0]
|
45 |
+
|
46 |
+
averaged_predictions = summed_predictions / num_segments
|
47 |
+
|
48 |
+
# Get the final prediction (the class with the highest probability)
|
49 |
+
final_prediction_idx = np.argmax(averaged_predictions)
|
50 |
+
final_class_label = map_labels[final_prediction_idx]
|
51 |
+
final_probability = averaged_predictions[final_prediction_idx]
|
52 |
+
|
53 |
+
# Format the result as a dictionary
|
54 |
+
result = {
|
55 |
+
"final_prediction": final_class_label,
|
56 |
+
"confidence": round(float(final_probability), 2),
|
57 |
+
"all_probabilities": {map_labels[i]: round(float(prob), 2) for i, prob in enumerate(averaged_predictions)}
|
58 |
+
}
|
59 |
+
|
60 |
+
return result
|
61 |
+
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=process_audio, # The function to process the uploaded audio
|
64 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio (WAV, MP3, FLAC)"), # Accept audio input
|
65 |
+
outputs="json", # Return predictions as text
|
66 |
+
title="Audio Classification", # Title of the interface
|
67 |
+
description="Upload an audio file (max 30 seconds) to get a genre classification."
|
68 |
+
)
|
69 |
+
|
70 |
+
# Launch the Gradio app
|
71 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tensorflow
|
3 |
+
huggingface_hub
|
4 |
+
librosa
|