Update app.py
Browse files
app.py
CHANGED
@@ -12,10 +12,10 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
@spaces.GPU
|
15 |
-
def generate(
|
16 |
messages = [
|
17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
18 |
-
{"role": "user", "content":
|
19 |
]
|
20 |
text = tokenizer.apply_chat_template(
|
21 |
messages,
|
@@ -25,7 +25,12 @@ def generate(prompt, history):
|
|
25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
26 |
generated_ids = model.generate(
|
27 |
**model_inputs,
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
generated_ids = [
|
31 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
@@ -78,6 +83,28 @@ TITLE_HTML = """
|
|
78 |
font-size: 0.9rem;
|
79 |
color: #94a3b8;
|
80 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
</style>
|
82 |
|
83 |
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
|
@@ -94,7 +121,7 @@ TITLE_HTML = """
|
|
94 |
|
95 |
<div style="display: flex; gap: 1.5rem; justify-content: center;">
|
96 |
<div class="model-section">
|
97 |
-
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom:
|
98 |
<i class="fas fa-brain"></i>
|
99 |
7B Models
|
100 |
</h2>
|
@@ -108,7 +135,7 @@ TITLE_HTML = """
|
|
108 |
</div>
|
109 |
</div>
|
110 |
<div class="model-section">
|
111 |
-
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom:
|
112 |
<i class="fas fa-rocket"></i>
|
113 |
14B Models
|
114 |
</h2>
|
@@ -125,9 +152,76 @@ TITLE_HTML = """
|
|
125 |
</div>
|
126 |
"""
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
with gr.Blocks() as demo:
|
129 |
gr.HTML(TITLE_HTML)
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
fn=generate,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
)
|
|
|
133 |
demo.launch(share=True)
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
@spaces.GPU
|
15 |
+
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
|
16 |
messages = [
|
17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
18 |
+
{"role": "user", "content": message}
|
19 |
]
|
20 |
text = tokenizer.apply_chat_template(
|
21 |
messages,
|
|
|
25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
26 |
generated_ids = model.generate(
|
27 |
**model_inputs,
|
28 |
+
temperature=float(temperature),
|
29 |
+
top_p=float(top_p),
|
30 |
+
top_k=int(top_k),
|
31 |
+
max_new_tokens=int(max_new_tokens),
|
32 |
+
repetition_penalty=float(repetition_penalty),
|
33 |
+
do_sample=True if float(temperature) > 0 else False
|
34 |
)
|
35 |
generated_ids = [
|
36 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
83 |
font-size: 0.9rem;
|
84 |
color: #94a3b8;
|
85 |
}
|
86 |
+
.settings-section {
|
87 |
+
background: rgba(255, 255, 255, 0.05);
|
88 |
+
padding: 1.5rem;
|
89 |
+
border-radius: 1rem;
|
90 |
+
margin: 1.5rem auto;
|
91 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
92 |
+
max-width: 800px;
|
93 |
+
}
|
94 |
+
.settings-title {
|
95 |
+
color: #e2e8f0;
|
96 |
+
font-size: 1.25rem;
|
97 |
+
font-weight: 600;
|
98 |
+
margin-bottom: 1rem;
|
99 |
+
display: flex;
|
100 |
+
align-items: center;
|
101 |
+
gap: 0.7rem;
|
102 |
+
}
|
103 |
+
.parameter-info {
|
104 |
+
color: #94a3b8;
|
105 |
+
font-size: 0.8rem;
|
106 |
+
margin-top: 0.25rem;
|
107 |
+
}
|
108 |
</style>
|
109 |
|
110 |
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
|
|
|
121 |
|
122 |
<div style="display: flex; gap: 1.5rem; justify-content: center;">
|
123 |
<div class="model-section">
|
124 |
+
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
|
125 |
<i class="fas fa-brain"></i>
|
126 |
7B Models
|
127 |
</h2>
|
|
|
135 |
</div>
|
136 |
</div>
|
137 |
<div class="model-section">
|
138 |
+
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
|
139 |
<i class="fas fa-rocket"></i>
|
140 |
14B Models
|
141 |
</h2>
|
|
|
152 |
</div>
|
153 |
"""
|
154 |
|
155 |
+
examples = [
|
156 |
+
["Explain quantum computing in simple terms"],
|
157 |
+
["Write a short story about a time traveler"],
|
158 |
+
["Explain the process of photosynthesis"],
|
159 |
+
["Tell me an intersting fact about Palm trees"]
|
160 |
+
]
|
161 |
+
|
162 |
with gr.Blocks() as demo:
|
163 |
gr.HTML(TITLE_HTML)
|
164 |
+
|
165 |
+
with gr.Accordion("Generation Settings", open=False):
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
temperature = gr.Slider(
|
169 |
+
minimum=0.0,
|
170 |
+
maximum=2.0,
|
171 |
+
value=0.7,
|
172 |
+
step=0.1,
|
173 |
+
label="Temperature",
|
174 |
+
info="Higher values make the output more random, lower values make it more deterministic",
|
175 |
+
interactive=True
|
176 |
+
)
|
177 |
+
top_p = gr.Slider(
|
178 |
+
minimum=0.0,
|
179 |
+
maximum=1.0,
|
180 |
+
value=0.9,
|
181 |
+
step=0.05,
|
182 |
+
label="Top P",
|
183 |
+
info="Controls the cumulative probability threshold for nucleus sampling",
|
184 |
+
interactive=True
|
185 |
+
)
|
186 |
+
top_k = gr.Slider(
|
187 |
+
minimum=1,
|
188 |
+
maximum=100,
|
189 |
+
value=50,
|
190 |
+
step=1,
|
191 |
+
label="Top K",
|
192 |
+
info="Limits the number of tokens to consider for each generation step",
|
193 |
+
interactive=True
|
194 |
+
)
|
195 |
+
with gr.Column():
|
196 |
+
max_new_tokens = gr.Slider(
|
197 |
+
minimum=1,
|
198 |
+
maximum=2048,
|
199 |
+
value=512,
|
200 |
+
step=1,
|
201 |
+
label="Max New Tokens",
|
202 |
+
info="Maximum number of tokens to generate in the response",
|
203 |
+
interactive=True
|
204 |
+
)
|
205 |
+
repetition_penalty = gr.Slider(
|
206 |
+
minimum=1.0,
|
207 |
+
maximum=2.0,
|
208 |
+
value=1.1,
|
209 |
+
step=0.1,
|
210 |
+
label="Repetition Penalty",
|
211 |
+
info="Higher values stop the model from repeating the same info",
|
212 |
+
interactive=True
|
213 |
+
)
|
214 |
+
|
215 |
+
chatbot = gr.ChatInterface(
|
216 |
fn=generate,
|
217 |
+
additional_inputs=[
|
218 |
+
temperature,
|
219 |
+
top_p,
|
220 |
+
top_k,
|
221 |
+
max_new_tokens,
|
222 |
+
repetition_penalty
|
223 |
+
],
|
224 |
+
examples=examples
|
225 |
)
|
226 |
+
|
227 |
demo.launch(share=True)
|