import os import pickle from .feature_extractor import FeatureExtractor import time from tqdm import tqdm def precompute_embeddings(): # Use absolute paths for Hugging Face Spaces base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) image_dir = os.path.join(base_dir, 'data', 'images') output_path = os.path.join(base_dir, 'data', 'embeddings.pkl') # Create directories if they don't exist os.makedirs(image_dir, exist_ok=True) os.makedirs(os.path.dirname(output_path), exist_ok=True) # Rest of your existing code... extractor = FeatureExtractor() embeddings = [] image_paths = [] valid_images = [f for f in os.listdir(image_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] total_images = len(valid_images) print(f"\nFound {total_images} images to process") start_time = time.time() for idx, filename in enumerate(tqdm(valid_images, desc="Processing images")): img_path = os.path.join(image_dir, filename) try: embedding = extractor.extract_features(img_path) embeddings.append(embedding) image_paths.append(img_path) except Exception as e: print(f"\nError processing {filename}: {e}") with open(output_path, 'wb') as f: pickle.dump({'embeddings': embeddings, 'image_paths': image_paths}, f) print(f"\nProcessing complete!") print(f"Successfully processed {len(embeddings)}/{total_images} images") return embeddings, image_paths