Update app.py
Browse files
app.py
CHANGED
|
@@ -26,16 +26,22 @@ def normalize(values):
|
|
| 26 |
min_val, max_val = min(values), max(values)
|
| 27 |
return [(v - min_val) / (max_val - min_val) if max_val > min_val else 0 for v in values]
|
| 28 |
|
| 29 |
-
# Function to get weighted recommendations based on
|
| 30 |
-
def get_weighted_recommendations_from_hf(
|
| 31 |
if weights is None:
|
| 32 |
weights = {"similarity": 0.7, "downloads": 0.2, "likes": 0.1}
|
| 33 |
|
| 34 |
model_data = fetch_models_from_hf(task_filter)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
model_ids = [model["model_id"] for model in model_data]
|
| 37 |
model_tags = [' '.join(model["tags"]) for model in model_data]
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
model_embeddings = semantic_model.encode(model_tags)
|
| 40 |
user_embedding = semantic_model.encode(user_query)
|
| 41 |
|
|
@@ -63,21 +69,20 @@ def get_weighted_recommendations_from_hf(user_query, task_filter, weights=None):
|
|
| 63 |
return '\n'.join(result)
|
| 64 |
|
| 65 |
# Gradio chatbot interface
|
| 66 |
-
def respond(
|
| 67 |
-
# Provide model recommendations based on the
|
| 68 |
-
return get_weighted_recommendations_from_hf(
|
| 69 |
|
| 70 |
# Gradio Interface
|
| 71 |
demo = gr.Interface(
|
| 72 |
fn=respond,
|
| 73 |
inputs=[
|
| 74 |
-
gr.Textbox(label="Enter your query", placeholder="What kind of model are you looking for?"),
|
| 75 |
gr.Textbox(label="Task Filter", placeholder="Enter the task, e.g., text-classification"),
|
| 76 |
gr.Textbox(value="You are using the Hugging Face model recommender system.", label="System message")
|
| 77 |
],
|
| 78 |
outputs=gr.Textbox(label="Model Recommendations"),
|
| 79 |
title="Hugging Face Model Recommender",
|
| 80 |
-
description="This chatbot recommends models from Hugging Face based on
|
| 81 |
)
|
| 82 |
|
| 83 |
if __name__ == "__main__":
|
|
|
|
| 26 |
min_val, max_val = min(values), max(values)
|
| 27 |
return [(v - min_val) / (max_val - min_val) if max_val > min_val else 0 for v in values]
|
| 28 |
|
| 29 |
+
# Function to get weighted recommendations based on task filter and additional metrics
|
| 30 |
+
def get_weighted_recommendations_from_hf(task_filter, weights=None):
|
| 31 |
if weights is None:
|
| 32 |
weights = {"similarity": 0.7, "downloads": 0.2, "likes": 0.1}
|
| 33 |
|
| 34 |
model_data = fetch_models_from_hf(task_filter)
|
| 35 |
|
| 36 |
+
if len(model_data) == 0:
|
| 37 |
+
return "No models found for the specified task filter."
|
| 38 |
+
|
| 39 |
model_ids = [model["model_id"] for model in model_data]
|
| 40 |
model_tags = [' '.join(model["tags"]) for model in model_data]
|
| 41 |
|
| 42 |
+
# Use a fixed user query based on task filter
|
| 43 |
+
user_query = f"best model for {task_filter}"
|
| 44 |
+
|
| 45 |
model_embeddings = semantic_model.encode(model_tags)
|
| 46 |
user_embedding = semantic_model.encode(user_query)
|
| 47 |
|
|
|
|
| 69 |
return '\n'.join(result)
|
| 70 |
|
| 71 |
# Gradio chatbot interface
|
| 72 |
+
def respond(task_filter, history=None, weights=None):
|
| 73 |
+
# Provide model recommendations based on the task filter
|
| 74 |
+
return get_weighted_recommendations_from_hf(task_filter, weights)
|
| 75 |
|
| 76 |
# Gradio Interface
|
| 77 |
demo = gr.Interface(
|
| 78 |
fn=respond,
|
| 79 |
inputs=[
|
|
|
|
| 80 |
gr.Textbox(label="Task Filter", placeholder="Enter the task, e.g., text-classification"),
|
| 81 |
gr.Textbox(value="You are using the Hugging Face model recommender system.", label="System message")
|
| 82 |
],
|
| 83 |
outputs=gr.Textbox(label="Model Recommendations"),
|
| 84 |
title="Hugging Face Model Recommender",
|
| 85 |
+
description="This chatbot recommends models from Hugging Face based on the task you're interested in."
|
| 86 |
)
|
| 87 |
|
| 88 |
if __name__ == "__main__":
|