Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
],
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import list_models
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load sentence transformer model for similarity calculation
|
7 |
+
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
8 |
+
|
9 |
+
# Function to fetch models from Hugging Face based on dynamic task filter
|
10 |
+
def fetch_models_from_hf(task_filter, limit=10):
|
11 |
+
models = list_models(filter=task_filter, limit=limit)
|
12 |
+
model_data = [
|
13 |
+
{
|
14 |
+
"model_id": model.modelId,
|
15 |
+
"tags": model.tags,
|
16 |
+
"downloads": model.downloads,
|
17 |
+
"likes": model.likes,
|
18 |
+
"last_modified": model.lastModified # You could use this for recency
|
19 |
+
}
|
20 |
+
for model in models
|
21 |
+
]
|
22 |
+
return model_data
|
23 |
+
|
24 |
+
# Normalize values for a 0-1 range
|
25 |
+
def normalize(values):
|
26 |
+
min_val, max_val = min(values), max(values)
|
27 |
+
return [(v - min_val) / (max_val - min_val) if max_val > min_val else 0 for v in values]
|
28 |
+
|
29 |
+
# Get weighted recommendations based on user query and additional metrics
|
30 |
+
def get_weighted_recommendations_from_hf(user_query, task_filter, weights=None):
|
31 |
+
if weights is None:
|
32 |
+
weights = {"similarity": 0.7, "downloads": 0.2, "likes": 0.1} # Adjustable
|
33 |
+
|
34 |
+
model_data = fetch_models_from_hf(task_filter)
|
35 |
+
|
36 |
+
model_ids = [model["model_id"] for model in model_data]
|
37 |
+
model_tags = [' '.join(model["tags"]) for model in model_data]
|
38 |
+
|
39 |
+
model_embeddings = semantic_model.encode(model_tags)
|
40 |
+
user_embedding = semantic_model.encode(user_query)
|
41 |
+
|
42 |
+
similarities = util.pytorch_cos_sim(user_embedding, model_embeddings)[0].numpy()
|
43 |
+
|
44 |
+
downloads = normalize([model["downloads"] for model in model_data])
|
45 |
+
likes = normalize([model["likes"] for model in model_data])
|
46 |
+
|
47 |
+
final_scores = []
|
48 |
+
for i in range(len(model_data)):
|
49 |
+
score = (
|
50 |
+
weights["similarity"] * similarities[i] +
|
51 |
+
weights["downloads"] * downloads[i] +
|
52 |
+
weights["likes"] * likes[i]
|
53 |
+
)
|
54 |
+
final_scores.append((model_ids[i], score, similarities[i], downloads[i], likes[i]))
|
55 |
+
|
56 |
+
ranked_recommendations = sorted(final_scores, key=lambda x: x[1], reverse=True)
|
57 |
+
|
58 |
+
result = []
|
59 |
+
for rank, (model_id, final_score, sim, downloads, likes) in enumerate(ranked_recommendations, 1):
|
60 |
+
result.append(f"Rank {rank}: Model ID: {model_id}, Final Score: {final_score:.4f}, "
|
61 |
+
f"Similarity: {sim:.4f}, Downloads: {downloads:.4f}, Likes: {likes:.4f}")
|
62 |
+
|
63 |
+
return '\n'.join(result)
|
64 |
+
|
65 |
+
# Define a Gradio interface function
|
66 |
+
def chatbot_interface(user_query, task_filter):
|
67 |
+
return get_weighted_recommendations_from_hf(user_query, task_filter)
|
68 |
+
|
69 |
+
# Gradio Interface
|
70 |
+
interface = gr.Interface(
|
71 |
+
fn=chatbot_interface,
|
72 |
+
inputs=[
|
73 |
+
gr.inputs.Textbox(label="Enter your query", placeholder="What kind of model or tag are you looking for?"),
|
74 |
+
gr.inputs.Textbox(label="Task Filter (e.g., text-classification, summarization, atari)", placeholder="Enter the task"),
|
75 |
],
|
76 |
+
outputs="text",
|
77 |
+
title="Hugging Face Model Recommendation Chatbot",
|
78 |
+
description="This chatbot recommends models from Hugging Face based on your query."
|
79 |
)
|
80 |
|
81 |
+
# Launch the Gradio interface
|
82 |
if __name__ == "__main__":
|
83 |
+
interface.launch()
|