ruffy369 commited on
Commit
4cc7261
·
verified ·
1 Parent(s): 37c38a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -58
app.py CHANGED
@@ -1,63 +1,83 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch(share=True)
 
1
  import gradio as gr
2
+ from huggingface_hub import list_models
3
+ from sentence_transformers import SentenceTransformer, util
4
+ import numpy as np
5
+
6
+ # Load sentence transformer model for similarity calculation
7
+ semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
8
+
9
+ # Function to fetch models from Hugging Face based on dynamic task filter
10
+ def fetch_models_from_hf(task_filter, limit=10):
11
+ models = list_models(filter=task_filter, limit=limit)
12
+ model_data = [
13
+ {
14
+ "model_id": model.modelId,
15
+ "tags": model.tags,
16
+ "downloads": model.downloads,
17
+ "likes": model.likes,
18
+ "last_modified": model.lastModified # You could use this for recency
19
+ }
20
+ for model in models
21
+ ]
22
+ return model_data
23
+
24
+ # Normalize values for a 0-1 range
25
+ def normalize(values):
26
+ min_val, max_val = min(values), max(values)
27
+ return [(v - min_val) / (max_val - min_val) if max_val > min_val else 0 for v in values]
28
+
29
+ # Get weighted recommendations based on user query and additional metrics
30
+ def get_weighted_recommendations_from_hf(user_query, task_filter, weights=None):
31
+ if weights is None:
32
+ weights = {"similarity": 0.7, "downloads": 0.2, "likes": 0.1} # Adjustable
33
+
34
+ model_data = fetch_models_from_hf(task_filter)
35
+
36
+ model_ids = [model["model_id"] for model in model_data]
37
+ model_tags = [' '.join(model["tags"]) for model in model_data]
38
+
39
+ model_embeddings = semantic_model.encode(model_tags)
40
+ user_embedding = semantic_model.encode(user_query)
41
+
42
+ similarities = util.pytorch_cos_sim(user_embedding, model_embeddings)[0].numpy()
43
+
44
+ downloads = normalize([model["downloads"] for model in model_data])
45
+ likes = normalize([model["likes"] for model in model_data])
46
+
47
+ final_scores = []
48
+ for i in range(len(model_data)):
49
+ score = (
50
+ weights["similarity"] * similarities[i] +
51
+ weights["downloads"] * downloads[i] +
52
+ weights["likes"] * likes[i]
53
+ )
54
+ final_scores.append((model_ids[i], score, similarities[i], downloads[i], likes[i]))
55
+
56
+ ranked_recommendations = sorted(final_scores, key=lambda x: x[1], reverse=True)
57
+
58
+ result = []
59
+ for rank, (model_id, final_score, sim, downloads, likes) in enumerate(ranked_recommendations, 1):
60
+ result.append(f"Rank {rank}: Model ID: {model_id}, Final Score: {final_score:.4f}, "
61
+ f"Similarity: {sim:.4f}, Downloads: {downloads:.4f}, Likes: {likes:.4f}")
62
+
63
+ return '\n'.join(result)
64
+
65
+ # Define a Gradio interface function
66
+ def chatbot_interface(user_query, task_filter):
67
+ return get_weighted_recommendations_from_hf(user_query, task_filter)
68
+
69
+ # Gradio Interface
70
+ interface = gr.Interface(
71
+ fn=chatbot_interface,
72
+ inputs=[
73
+ gr.inputs.Textbox(label="Enter your query", placeholder="What kind of model or tag are you looking for?"),
74
+ gr.inputs.Textbox(label="Task Filter (e.g., text-classification, summarization, atari)", placeholder="Enter the task"),
75
  ],
76
+ outputs="text",
77
+ title="Hugging Face Model Recommendation Chatbot",
78
+ description="This chatbot recommends models from Hugging Face based on your query."
79
  )
80
 
81
+ # Launch the Gradio interface
82
  if __name__ == "__main__":
83
+ interface.launch()