import torch.nn as nn import torch.nn.functional as F class FeedForwardClassifier(nn.Module): def __init__(self, input_size): super(FeedForwardClassifier, self).__init__() self.fc1 = nn.Linear(in_features=input_size, out_features=600) self.drop1 = nn.Dropout(0.25) self.fc2 = nn.Linear(in_features=600, out_features=120) self.drop2 = nn.Dropout(0.25) self.fc3 = nn.Linear(in_features=120, out_features=10) def forward(self, x): x = x.view(x.size(0), -1) # Flatten the input x = F.relu(self.fc1(x)) x = self.drop1(x) x = F.relu(self.fc2(x)) x = self.drop2(x) x = self.fc3(x) return x