Spaces:
Runtime error
Runtime error
Updated to use ruggsea/Llama3.1-8B-SEP-Chat with multi-turn support
Browse files- app.py +29 -23
- requirements.txt +7 -8
app.py
CHANGED
@@ -12,48 +12,49 @@ DEFAULT_MAX_NEW_TOKENS = 4000
|
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
-
# Llama-3 8B Stanford Encyclopedia of Philosophy
|
16 |
|
17 |
-
This Space showcases the
|
18 |
|
19 |
-
Feel free to
|
20 |
"""
|
21 |
|
22 |
LICENSE = """
|
23 |
<p/>
|
24 |
|
25 |
---
|
26 |
-
As a
|
27 |
-
this demo is governed by the original [license](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/USE_POLICY.md).
|
28 |
"""
|
29 |
|
30 |
if not torch.cuda.is_available():
|
31 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
32 |
|
33 |
-
|
34 |
if torch.cuda.is_available():
|
35 |
-
model_id = "ruggsea/Llama3.1-
|
36 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
37 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
38 |
tokenizer.use_default_system_prompt = False
|
39 |
|
40 |
-
|
41 |
@spaces.GPU
|
42 |
def generate(
|
43 |
message: str,
|
44 |
chat_history: list[tuple[str, str]],
|
45 |
system_prompt: str,
|
46 |
max_new_tokens: int = 1024,
|
47 |
-
temperature: float = 0.
|
48 |
top_p: float = 0.9,
|
49 |
top_k: int = 50,
|
50 |
-
repetition_penalty: float = 1.
|
51 |
) -> Iterator[str]:
|
52 |
conversation = []
|
53 |
if system_prompt:
|
54 |
conversation.append({"role": "system", "content": system_prompt})
|
55 |
for user, assistant in chat_history:
|
56 |
-
conversation.extend([
|
|
|
|
|
|
|
57 |
conversation.append({"role": "user", "content": message})
|
58 |
|
59 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
@@ -64,7 +65,7 @@ def generate(
|
|
64 |
|
65 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
66 |
generate_kwargs = dict(
|
67 |
-
|
68 |
streamer=streamer,
|
69 |
max_new_tokens=max_new_tokens,
|
70 |
do_sample=True,
|
@@ -82,12 +83,13 @@ def generate(
|
|
82 |
outputs.append(text)
|
83 |
yield "".join(outputs)
|
84 |
|
85 |
-
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
additional_inputs=[
|
89 |
-
gr.Textbox(
|
90 |
-
|
|
|
|
|
91 |
),
|
92 |
gr.Slider(
|
93 |
label="Max new tokens",
|
@@ -101,7 +103,7 @@ chat_interface = gr.ChatInterface(
|
|
101 |
minimum=0.1,
|
102 |
maximum=4.0,
|
103 |
step=0.1,
|
104 |
-
value=0.
|
105 |
),
|
106 |
gr.Slider(
|
107 |
label="Top-p (nucleus sampling)",
|
@@ -122,22 +124,26 @@ chat_interface = gr.ChatInterface(
|
|
122 |
minimum=1.0,
|
123 |
maximum=2.0,
|
124 |
step=0.05,
|
125 |
-
value=1.
|
126 |
),
|
127 |
],
|
128 |
stop_btn=None,
|
129 |
examples=[
|
130 |
-
["
|
131 |
-
["Can you explain
|
132 |
-
["
|
133 |
-
["
|
134 |
-
["
|
135 |
],
|
|
|
136 |
)
|
137 |
|
138 |
with gr.Blocks(css="style.css") as demo:
|
139 |
gr.Markdown(DESCRIPTION)
|
140 |
-
gr.DuplicateButton(
|
|
|
|
|
|
|
141 |
chat_interface.render()
|
142 |
gr.Markdown(LICENSE)
|
143 |
|
|
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
+
# Llama-3.1 8B Stanford Encyclopedia of Philosophy Chat
|
16 |
|
17 |
+
This Space showcases the Llama3.1-8B-SEP-Chat model from ruggsea, a fine-tuned version of Meta's Llama 3.1 8B model, specifically tailored for philosophical discussions with a formal and informative tone. The model was trained using the Stanford Encyclopedia of Philosophy dataset and carefully crafted prompts.
|
18 |
|
19 |
+
Feel free to engage in philosophical discussions and ask questions. The model supports multi-turn conversations and will maintain context.
|
20 |
"""
|
21 |
|
22 |
LICENSE = """
|
23 |
<p/>
|
24 |
|
25 |
---
|
26 |
+
As a derivative work of Llama 3.1, this demo is governed by the original Meta license and acceptable use policy.
|
|
|
27 |
"""
|
28 |
|
29 |
if not torch.cuda.is_available():
|
30 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
31 |
|
32 |
+
# Initialize model and tokenizer
|
33 |
if torch.cuda.is_available():
|
34 |
+
model_id = "ruggsea/Llama3.1-8B-SEP-Chat"
|
35 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
36 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
37 |
tokenizer.use_default_system_prompt = False
|
38 |
|
|
|
39 |
@spaces.GPU
|
40 |
def generate(
|
41 |
message: str,
|
42 |
chat_history: list[tuple[str, str]],
|
43 |
system_prompt: str,
|
44 |
max_new_tokens: int = 1024,
|
45 |
+
temperature: float = 0.7,
|
46 |
top_p: float = 0.9,
|
47 |
top_k: int = 50,
|
48 |
+
repetition_penalty: float = 1.1,
|
49 |
) -> Iterator[str]:
|
50 |
conversation = []
|
51 |
if system_prompt:
|
52 |
conversation.append({"role": "system", "content": system_prompt})
|
53 |
for user, assistant in chat_history:
|
54 |
+
conversation.extend([
|
55 |
+
{"role": "user", "content": user},
|
56 |
+
{"role": "assistant", "content": assistant}
|
57 |
+
])
|
58 |
conversation.append({"role": "user", "content": message})
|
59 |
|
60 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
65 |
|
66 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
generate_kwargs = dict(
|
68 |
+
input_ids=input_ids,
|
69 |
streamer=streamer,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=True,
|
|
|
83 |
outputs.append(text)
|
84 |
yield "".join(outputs)
|
85 |
|
|
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
additional_inputs=[
|
89 |
+
gr.Textbox(
|
90 |
+
label="System prompt",
|
91 |
+
lines=6,
|
92 |
+
value="You are a knowledgeable philosophy professor. Provide clear, accurate responses using markdown formatting. Focus on philosophical concepts and maintain academic rigor while being accessible."
|
93 |
),
|
94 |
gr.Slider(
|
95 |
label="Max new tokens",
|
|
|
103 |
minimum=0.1,
|
104 |
maximum=4.0,
|
105 |
step=0.1,
|
106 |
+
value=0.7,
|
107 |
),
|
108 |
gr.Slider(
|
109 |
label="Top-p (nucleus sampling)",
|
|
|
124 |
minimum=1.0,
|
125 |
maximum=2.0,
|
126 |
step=0.05,
|
127 |
+
value=1.1,
|
128 |
),
|
129 |
],
|
130 |
stop_btn=None,
|
131 |
examples=[
|
132 |
+
["What is the trolley problem and what are its main ethical implications?"],
|
133 |
+
["Can you explain Plato's Theory of Forms?"],
|
134 |
+
["What is the difference between analytic and continental philosophy?"],
|
135 |
+
["How does Kant's Categorical Imperative work?"],
|
136 |
+
["What is the problem of consciousness in philosophy of mind?"],
|
137 |
],
|
138 |
+
title="Philosophy Chat with Llama 3.1",
|
139 |
)
|
140 |
|
141 |
with gr.Blocks(css="style.css") as demo:
|
142 |
gr.Markdown(DESCRIPTION)
|
143 |
+
gr.DuplicateButton(
|
144 |
+
value="Duplicate Space for private use",
|
145 |
+
elem_id="duplicate-button"
|
146 |
+
)
|
147 |
chat_interface.render()
|
148 |
gr.Markdown(LICENSE)
|
149 |
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
transformers==4.39.3
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
torch
|
3 |
+
transformers>=4.37.0
|
4 |
+
accelerate
|
5 |
+
bitsandbytes>=0.41.0
|
6 |
+
scipy
|
7 |
+
sentencepiece
|
|