# prompt: gradio image 分类 import fastai from fastai.vision import * from fastai.vision.all import load_learner,PILImage import gradio as gr # Load the model model = load_learner("model.pkl") # Define an image classification function def classify_image(image): img = PILImage.create(image) # Make a prediction pred_class, pred_idx, probs = model.predict(img) # Return the prediction as a dictionary return {model.dls.vocab[i]: float(probs[i]) for i in range(len(probs))} # Create the Gradio interface image_input = gr.Image() label_output = gr.Label(num_top_classes=3) interface = gr.Interface(fn=classify_image, inputs=image_input, outputs=label_output) # Launch the interface interface.launch()