Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from transformers import AutoModelForImageClassification, ViTImageProcessor | |
import gradio as gr | |
# Load the model and processor | |
model_name = "Falconsai/nsfw_image_detection" | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
processor = ViTImageProcessor.from_pretrained(model_name) | |
# Define a function to classify the image and return the results | |
def classify_image(img): | |
pil_image = Image.fromarray(img.astype('uint8'), 'RGB') | |
inputs = processor(images=pil_image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = torch.nn.functional.softmax(logits, dim=-1)[0] | |
results = {model.config.id2label[i]: float(probs[i]) for i in range(len(probs))} | |
return results | |
# Create the Gradio interface | |
image_input = gr.Image() | |
label_output = gr.Label(num_top_classes=2) | |
interface = gr.Interface(fn=classify_image, inputs=image_input, outputs=label_output) | |
# Launch the interface | |
interface.launch() | |