Spaces:
Runtime error
Runtime error
Added Error Check
Browse filesApp raises error when it does not detect date elements.
- filterminutes.py +16 -6
- public_app.py +25 -19
filterminutes.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import logging
|
|
|
|
|
2 |
|
3 |
log = logging.getLogger('filter methods')
|
4 |
logging.basicConfig(level=logging.INFO)
|
@@ -57,15 +59,23 @@ def search_with_filter(vector_store, query, filter_dict, target_k=5, init_k=100,
|
|
57 |
step : int
|
58 |
The size of the step when enlarging the search.
|
59 |
|
60 |
-
Returns: List of at least target_k Documents for post-processing
|
61 |
|
62 |
"""
|
63 |
context = filter_docs_by_meta(vector_store.similarity_search(query, k=init_k), filter_dict)
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
log.info(f'Context contains {len(context)} documents')
|
66 |
-
log.info(f'Expanding search with k={
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
return context
|
71 |
|
|
|
1 |
import logging
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
|
5 |
log = logging.getLogger('filter methods')
|
6 |
logging.basicConfig(level=logging.INFO)
|
|
|
59 |
step : int
|
60 |
The size of the step when enlarging the search.
|
61 |
|
62 |
+
Returns: List of at least target_k Documents for post-processing.
|
63 |
|
64 |
"""
|
65 |
context = filter_docs_by_meta(vector_store.similarity_search(query, k=init_k), filter_dict)
|
66 |
+
len_docs_begin = len(context)
|
67 |
+
if len_docs_begin >= target_k:
|
68 |
+
log.info(f'Initial search contains {len_docs_begin} Documents. Expansion not required. ')
|
69 |
+
return context
|
70 |
+
CUT_THE_LOOP_N = 10
|
71 |
+
for top_k_docs in np.arange(init_k, CUT_THE_LOOP_N * init_k, step):
|
72 |
log.info(f'Context contains {len(context)} documents')
|
73 |
+
log.info(f'Expanding search with k={top_k_docs}')
|
74 |
+
context = filter_docs_by_meta(vector_store.similarity_search(query, k=int(top_k_docs)), filter_dict)
|
75 |
+
if len(context) == target_k:
|
76 |
+
log.info(f'Success. Context contains {len(context)} Documents matching the filtering criteria')
|
77 |
+
return context
|
78 |
+
log.info(f'Failed to reach target number of documents after {CUT_THE_LOOP_N} loops,'
|
79 |
+
f' context contains {len(context)} Documents matching the filtering criteria')
|
80 |
return context
|
81 |
|
public_app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import logging
|
|
|
2 |
|
3 |
from langchain import PromptTemplate, LLMChain
|
4 |
from langchain.chains.question_answering import load_qa_chain
|
@@ -32,7 +33,7 @@ def load_chains(open_ai_key):
|
|
32 |
return date_extractor, fed_chain
|
33 |
|
34 |
|
35 |
-
def get_chain(query, api_key):
|
36 |
"""
|
37 |
Detects the date, computes similarity, and answers the query using
|
38 |
only documents corresponding to the date requested.
|
@@ -51,34 +52,39 @@ def get_chain(query, api_key):
|
|
51 |
date_extractor, fed_chain = load_chains(api_key)
|
52 |
logging.info('Extracting the date in numeric format..')
|
53 |
date_response = date_extractor.run(query)
|
54 |
-
if date_response
|
|
|
|
|
|
|
55 |
filter_date = json.loads(date_response)
|
56 |
-
|
57 |
logging.info(f'Date parameters retrieved: {filter_date}')
|
58 |
logging.info('Running the qa with filtered context..')
|
59 |
filtered_context = search_with_filter(vs, query, init_k=200, step=300, target_k=7, filter_dict=filter_date)
|
60 |
-
|
61 |
logging.info(20 * '-' + 'Metadata for the documents to be used' + 20 * '-')
|
62 |
for doc in filtered_context:
|
63 |
logging.info(doc.metadata)
|
64 |
-
else:
|
65 |
-
logging.info('No date elements found. Running the qa without filtering can output incorrect results.')
|
66 |
-
filtered_context = vs.similarity_search(query, k=7)
|
67 |
return fed_chain({'input_documents': filtered_context[:7], 'question': query})['output_text']
|
68 |
|
69 |
|
70 |
if __name__ == '__main__':
|
71 |
app = gr.Interface(fn=get_chain,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
app.launch()
|
|
|
1 |
import logging
|
2 |
+
import os
|
3 |
|
4 |
from langchain import PromptTemplate, LLMChain
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
33 |
return date_extractor, fed_chain
|
34 |
|
35 |
|
36 |
+
def get_chain(query, api_key=os.environ['OPENAI_API_KEY']):
|
37 |
"""
|
38 |
Detects the date, computes similarity, and answers the query using
|
39 |
only documents corresponding to the date requested.
|
|
|
52 |
date_extractor, fed_chain = load_chains(api_key)
|
53 |
logging.info('Extracting the date in numeric format..')
|
54 |
date_response = date_extractor.run(query)
|
55 |
+
if date_response == 'False':
|
56 |
+
logging.info('No date elements found. Running the qa without filtering can output incorrect results.')
|
57 |
+
raise gr.Error('No date elements found. Please include temporal references in in your query.')
|
58 |
+
else:
|
59 |
filter_date = json.loads(date_response)
|
|
|
60 |
logging.info(f'Date parameters retrieved: {filter_date}')
|
61 |
logging.info('Running the qa with filtered context..')
|
62 |
filtered_context = search_with_filter(vs, query, init_k=200, step=300, target_k=7, filter_dict=filter_date)
|
|
|
63 |
logging.info(20 * '-' + 'Metadata for the documents to be used' + 20 * '-')
|
64 |
for doc in filtered_context:
|
65 |
logging.info(doc.metadata)
|
|
|
|
|
|
|
66 |
return fed_chain({'input_documents': filtered_context[:7], 'question': query})['output_text']
|
67 |
|
68 |
|
69 |
if __name__ == '__main__':
|
70 |
app = gr.Interface(fn=get_chain,
|
71 |
+
inputs=[gr.Textbox(lines=2, placeholder="Enter your query", label='Your query'),
|
72 |
+
gr.Textbox(lines=1, placeholder="Your OpenAI API key here", label='OpenAI Key')],
|
73 |
+
description='Here, you can query the [minutes](www.federalreserve.gov) of the Federal '
|
74 |
+
'Open Market Committee meetings from March 1936 to May 2023. Click the examples'
|
75 |
+
' below to see an illustration of the tool in action.',
|
76 |
+
article='**Disclaimer**: This app is for demonstration purposes only, and it may take some '
|
77 |
+
'time to load'
|
78 |
+
'during periods of heavy load',
|
79 |
+
analytics_enabled=True,
|
80 |
+
outputs=gr.Textbox(lines=1, label='Answer'),
|
81 |
+
title='Chat with the FOMC meeting minutes',
|
82 |
+
examples=[['What was the economic outlook from the staff presented in the meeting '
|
83 |
+
'of April 2009 with respect to labour market developments and industrial production?'],
|
84 |
+
['Who were the voting members present in the meeting on March 2010?'],
|
85 |
+
['How important was the pandemic of Covid-19 in the discussions during 2020?'],
|
86 |
+
['What was the impact of the oil crisis for the economic outlook during 1973?']],
|
87 |
+
cache_examples=True
|
88 |
+
)
|
89 |
+
app.queue()
|
90 |
app.launch()
|