File size: 8,785 Bytes
a0d3657
f6f725c
04e983e
 
 
 
 
a0d3657
 
 
04e983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e714e4a
 
 
 
 
 
 
 
 
 
 
04e983e
e714e4a
04e983e
 
 
 
e714e4a
02a75ae
 
 
 
 
 
 
 
 
04e983e
02a75ae
 
04e983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2caab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9d3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
078ace6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e983e
 
078ace6
 
04e983e
078ace6
 
 
 
aec731e
04e983e
078ace6
 
04e983e
078ace6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset. 
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.

# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast

# mdl_name = "deepset/roberta-base-squad2"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

# def answer_question(question,context):
#     text= "{"+"'question': '"+question+"','context': '"+context+"'}"
#     di=ast.literal_eval(text)
#     response = my_pipeline(di)
#     return response

# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()

#---------------------------------------------------------------------------------
# 2. Same task, different model.

# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast

# mdl_name = "distilbert-base-cased-distilled-squad"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

# def answer_question(question,context):
#     text= "{"+"'question': '"+question+"','context': '"+context+"'}"
#     di=ast.literal_eval(text)
#     response = my_pipeline(di)
#     return response

# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()

#---------------------------------------------------------------------------------
# 3. Different task: language translation.

# from transformers import pipeline
# import gradio as grad

# First model translates English to German.
# mdl_name = "Helsinki-NLP/opus-mt-en-de"
# opus_translator = pipeline("translation", model=mdl_name)

# def translate(text):
#     response = opus_translator(text)
#     return response

# grad.Interface(translate, inputs=["text",], outputs="text").launch()

#----------------------------------------------------------------------------------
# 4. Language translation without pipeline API.
# Second model translates English to French.

# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# import gradio as grad

# mdl_name = "Helsinki-NLP/opus-mt-en-fr"
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name)
# my_tkn = AutoTokenizer.from_pretrained(mdl_name)

# def translate(text):
#     inputs = my_tkn(text, return_tensors="pt")
#     trans_output = mdl.generate(**inputs)
#     response = my_tkn.decode(trans_output[0], skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=1, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=1, label="French")
# grad.Interface(translate, inputs=txt, outputs=out).launch()

#-----------------------------------------------------------------------------------
# 5. Different task: abstractive summarization
# Abstractive summarization is more difficult than extractive summarization, 
# which pulls key sentences from a document and combines them to form a “summary.” 
# Because abstractive summarization involves paraphrasing words, it is also more time-consuming; 
# however, it has the potential to produce a more polished and coherent summary.

# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad

# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)

# def summarize(text):
#     tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
#     txt_summary = mdl.generate(**tokens)
#     response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")

# grad.Interface(summarize, inputs=txt, outputs=out).launch()

#------------------------------------------------------------------------------------------
# 6. Same model with some tuning with some parameters: num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10

# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad

# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)

# def summarize(text):
#     tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
#     translated_txt = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10)
#     response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")

# grad.Interface(summarize, inputs=txt, outputs=out).launch()

#-----------------------------------------------------------------------------------
# 7. Zero-Shot Learning: 
# Zero-shot learning, as the name implies, is to use a pretrained model , trained on a certain set of data, 
# on a different set of data, which it has not seen during training. This would mean, as an example, to take 
# some model from huggingface that is trained on a certain dataset and use it for inference on examples it has never seen before.

# The transformers are where the zero-shot classification implementations are most frequently found by us. 
# There are more than 60 transformer models that function based on the zero-shot classification that are found in the huggingface library.

# When we discuss zero-shot text classification , there is one additional thing that springs to mind. 
# In the same vein as zero-shot classification is few-shot classification, which is very similar to zero-shot classification. 
# However, in contrast with zero-shot classification, few-shot classification makes use of very few labeled samples during the training process. 
# The implementation of the few-shot classification methods can be found in OpenAI, where the GPT3 classifier is a well-known example of a few-shot classifier.

# Deploying the following code works but comes with a warning: "No model was supplied, defaulted to facebook/bart-large-mnli and revision c626438 (https://huggingface.co/facebook/bart-large-mnli).
# Using a pipeline without specifying a model name and revision in production is not recommended."

# from transformers import pipeline
# import gradio as grad

# zero_shot_classifier = pipeline("zero-shot-classification")

# def classify(text,labels):
#     classifer_labels = labels.split(",")
#     #["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
#     response = zero_shot_classifier(text,classifer_labels)
#     return response

# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
# labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
# out=grad.Textbox(lines=1, label="Classification")

# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()

#-----------------------------------------------------------------------------------
# 8. Text Generation Task/Models
# The earliest text generation models were based on Markov chains . Markov chains are like a state machine wherein 
# using only the previous state, the next state is predicted. This is similar also to what we studied in bigrams.

# Post the Markov chains, recurrent neural networks (RNNs) , which were capable of retaining a greater context of the text, were introduced. 
# They are based on neural network architectures that are recurrent in nature. RNNs are able to retain a greater context of the text that was introduced. 
# Nevertheless, the amount of information that these kinds of networks are able to remember is constrained, and it is also difficult to train them, 
# which means that they are not effective at generating lengthy texts. To counter this issue with RNNs, LSTM architectures were evolved, 
# which could capture long-term dependencies in text. Finally, we came to transformers, whose decoder architecture became popular for generative models 
# used for generating text as an example.

from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad

mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')

def generate(starting_text):
    tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
    gpt2_tensors = mdl.generate(tkn_ids)
    response = gpt2_tensors
    return response

txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")

grad.Interface(generate, inputs=txt, outputs=out).launch()