Spaces:
Runtime error
Runtime error
File size: 6,786 Bytes
a0d3657 f6f725c 04e983e a0d3657 04e983e e714e4a 04e983e e714e4a 04e983e e714e4a 02a75ae 04e983e 02a75ae 04e983e 7a2caab ab9d3ba 04e983e ab9d3ba 04e983e ab9d3ba aec731e 04e983e ab9d3ba 04e983e ab9d3ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset.
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast
# mdl_name = "deepset/roberta-base-squad2"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
# def answer_question(question,context):
# text= "{"+"'question': '"+question+"','context': '"+context+"'}"
# di=ast.literal_eval(text)
# response = my_pipeline(di)
# return response
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
#---------------------------------------------------------------------------------
# 2. Same task, different model.
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast
# mdl_name = "distilbert-base-cased-distilled-squad"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
# def answer_question(question,context):
# text= "{"+"'question': '"+question+"','context': '"+context+"'}"
# di=ast.literal_eval(text)
# response = my_pipeline(di)
# return response
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
#---------------------------------------------------------------------------------
# 3. Different task: language translation.
# from transformers import pipeline
# import gradio as grad
# First model translates English to German.
# mdl_name = "Helsinki-NLP/opus-mt-en-de"
# opus_translator = pipeline("translation", model=mdl_name)
# def translate(text):
# response = opus_translator(text)
# return response
# grad.Interface(translate, inputs=["text",], outputs="text").launch()
#----------------------------------------------------------------------------------
# 4. Language translation without pipeline API.
# Second model translates English to French.
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# import gradio as grad
# mdl_name = "Helsinki-NLP/opus-mt-en-fr"
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name)
# my_tkn = AutoTokenizer.from_pretrained(mdl_name)
# def translate(text):
# inputs = my_tkn(text, return_tensors="pt")
# trans_output = mdl.generate(**inputs)
# response = my_tkn.decode(trans_output[0], skip_special_tokens=True)
# return response
# txt = grad.Textbox(lines=1, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=1, label="French")
# grad.Interface(translate, inputs=txt, outputs=out).launch()
#-----------------------------------------------------------------------------------
# 5. Different task: abstractive summarization
# Abstractive summarization is more difficult than extractive summarization,
# which pulls key sentences from a document and combines them to form a “summary.”
# Because abstractive summarization involves paraphrasing words, it is also more time-consuming;
# however, it has the potential to produce a more polished and coherent summary.
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad
# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
# def summarize(text):
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
# txt_summary = mdl.generate(**tokens)
# response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
# return response
# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
#------------------------------------------------------------------------------------------
# 6. Same model with some tuning with some parameters: num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad
# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
# def summarize(text):
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
# translated_txt = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10)
# response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
# return response
# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
#-----------------------------------------------------------------------------------
# 7. Zero-Shot Learning:
# Zero-shot learning, as the name implies, is to use a pretrained model , trained on a certain set of data,
# on a different set of data, which it has not seen during training. This would mean, as an example, to take
# some model from huggingface that is trained on a certain dataset and use it for inference on examples it has never seen before.
# The transformers are where the zero-shot classification implementations are most frequently found by us.
# There are more than 60 transformer models that function based on the zero-shot classification that are found in the huggingface library.
# When we discuss zero-shot text classification , there is one additional thing that springs to mind.
# In the same vein as zero-shot classification is few-shot classification, which is very similar to zero-shot classification.
# However, in contrast with zero-shot classification, few-shot classification makes use of very few labeled samples during the training process.
# The implementation of the few-shot classification methods can be found in OpenAI, where the GPT3 classifier is a well-known example of a few-shot classifier.
from transformers import pipeline
import gradio as grad
zero_shot_classifier = pipeline("zero-shot-classification")
def classify(text,labels):
classifer_labels = labels.split(",")
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
response = zero_shot_classifier(text,classifer_labels)
return response
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
out=grad.Textbox(lines=1, label="Classification")
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|