File size: 6,786 Bytes
a0d3657
f6f725c
04e983e
 
 
 
 
a0d3657
 
 
04e983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e714e4a
 
 
 
 
 
 
 
 
 
 
04e983e
e714e4a
04e983e
 
 
 
e714e4a
02a75ae
 
 
 
 
 
 
 
 
04e983e
02a75ae
 
04e983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2caab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9d3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e983e
 
ab9d3ba
04e983e
ab9d3ba
aec731e
 
 
 
04e983e
ab9d3ba
 
 
04e983e
ab9d3ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset. 
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.

# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast

# mdl_name = "deepset/roberta-base-squad2"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

# def answer_question(question,context):
#     text= "{"+"'question': '"+question+"','context': '"+context+"'}"
#     di=ast.literal_eval(text)
#     response = my_pipeline(di)
#     return response

# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()

#---------------------------------------------------------------------------------
# 2. Same task, different model.

# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# import gradio as grad
# import ast

# mdl_name = "distilbert-base-cased-distilled-squad"
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

# def answer_question(question,context):
#     text= "{"+"'question': '"+question+"','context': '"+context+"'}"
#     di=ast.literal_eval(text)
#     response = my_pipeline(di)
#     return response

# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()

#---------------------------------------------------------------------------------
# 3. Different task: language translation.

# from transformers import pipeline
# import gradio as grad

# First model translates English to German.
# mdl_name = "Helsinki-NLP/opus-mt-en-de"
# opus_translator = pipeline("translation", model=mdl_name)

# def translate(text):
#     response = opus_translator(text)
#     return response

# grad.Interface(translate, inputs=["text",], outputs="text").launch()

#----------------------------------------------------------------------------------
# 4. Language translation without pipeline API.
# Second model translates English to French.

# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# import gradio as grad

# mdl_name = "Helsinki-NLP/opus-mt-en-fr"
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name)
# my_tkn = AutoTokenizer.from_pretrained(mdl_name)

# def translate(text):
#     inputs = my_tkn(text, return_tensors="pt")
#     trans_output = mdl.generate(**inputs)
#     response = my_tkn.decode(trans_output[0], skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=1, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=1, label="French")
# grad.Interface(translate, inputs=txt, outputs=out).launch()

#-----------------------------------------------------------------------------------
# 5. Different task: abstractive summarization
# Abstractive summarization is more difficult than extractive summarization, 
# which pulls key sentences from a document and combines them to form a “summary.” 
# Because abstractive summarization involves paraphrasing words, it is also more time-consuming; 
# however, it has the potential to produce a more polished and coherent summary.

# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad

# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)

# def summarize(text):
#     tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
#     txt_summary = mdl.generate(**tokens)
#     response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")

# grad.Interface(summarize, inputs=txt, outputs=out).launch()

#------------------------------------------------------------------------------------------
# 6. Same model with some tuning with some parameters: num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10

# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import gradio as grad

# mdl_name = "google/pegasus-xsum"
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)

# def summarize(text):
#     tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
#     translated_txt = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10)
#     response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
#     return response

# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
# out = grad.Textbox(lines=10, label="Summary")

# grad.Interface(summarize, inputs=txt, outputs=out).launch()

#-----------------------------------------------------------------------------------
# 7. Zero-Shot Learning: 
# Zero-shot learning, as the name implies, is to use a pretrained model , trained on a certain set of data, 
# on a different set of data, which it has not seen during training. This would mean, as an example, to take 
# some model from huggingface that is trained on a certain dataset and use it for inference on examples it has never seen before.

# The transformers are where the zero-shot classification implementations are most frequently found by us. 
# There are more than 60 transformer models that function based on the zero-shot classification that are found in the huggingface library.

# When we discuss zero-shot text classification , there is one additional thing that springs to mind. 
# In the same vein as zero-shot classification is few-shot classification, which is very similar to zero-shot classification. 
# However, in contrast with zero-shot classification, few-shot classification makes use of very few labeled samples during the training process. 
# The implementation of the few-shot classification methods can be found in OpenAI, where the GPT3 classifier is a well-known example of a few-shot classifier.

from transformers import pipeline
import gradio as grad

zero_shot_classifier = pipeline("zero-shot-classification")

def classify(text,labels):
    classifer_labels = labels.split(",")
    #["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
    response = zero_shot_classifier(text,classifer_labels)
    return response

txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
out=grad.Textbox(lines=1, label="Classification")

grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()